[go: up one dir, main page]

login
A054236
Consider all integer triples (i,j,k), j,k>0, with i^3=j^3+binomial(k+2,3), ordered by increasing i; sequence gives k values.
3
6, 19, 132, 182, 217, 757, 2377, 2077, 2833, 4374, 2408, 4864, 4912, 6097, 7295, 3324, 8341, 13357, 17522, 20006, 25939, 20406, 24492, 68984, 75732, 69151, 79000, 69361, 97598, 99064, 126014, 126873, 154622, 174278, 180514, 136431, 117151, 198310, 238630, 282961, 297815
OFFSET
1,1
COMMENTS
i values are A054234 and j values are A054235.
LINKS
Jon E. Schoenfield, Table of n, a(n) for n=1..41
EXAMPLE
4^3 = 64 = 2^3 + binomial(6+2,3);
11^3 = 1331 = 1^3 + binomial(19+2,3).
MATHEMATICA
(* This is just a re-computation of A054236, given A054234 *)
A054234 = Cases[Import["https://oeis.org/A054234/b054234.txt", "Table"], {_, _}][[All, 2]];
A054236 = Reap[ Do[ Do[ r = Reduce[ i^3 == j^3 + Binomial[k+2, 3], k, Integers]; If[r =!= False, ijk = {i, j, k} /. ToRules[r]; Print[ijk]; Sow[ijk[[3]]]; Break[]], {j, 1, i-2}], {i, A054234}]][[2, 1]] (* Jean-François Alcover, Jan 2013, updated Jan 24 2020 *)
CROSSREFS
Sequence in context: A138748 A097899 A223505 * A118411 A091876 A041066
KEYWORD
nice,nonn
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 07 2000
EXTENSIONS
More terms from Jon E. Schoenfield, Jan 19 2009
STATUS
approved