[go: up one dir, main page]

login
A054235
Consider all integer triples (i,j,k), j,k>0, with i^3=j^3+binomial(k+2,3), ordered by increasing i; sequence gives j values.
3
2, 1, 31, 62, 11, 174, 120, 1352, 1168, 1140, 2602, 1244, 1394, 2287, 2982, 4469, 644, 3073, 1879, 10771, 1309, 17437, 35739, 734, 17425, 30566, 27350, 45142, 33266, 37592, 32212, 56555, 20376, 29832, 66403, 111466, 116150, 98808, 15668, 14279, 63561
OFFSET
1,1
COMMENTS
i values are A054234 and k values are A054236
LINKS
Jon E. Schoenfield, Table of n, a(n) for n=1..41
EXAMPLE
4^3 = 64 = 2^3+binomial(6+2,3); 11^3 = 1331 = 1^3+binomial(19+2,3).
MATHEMATICA
(* This is just a re-computation of A054235, given A054234 *)
A054234 = Cases[Import["https://oeis.org/A054234/b054234.txt", "Table"], {_, _}][[All, 2]];
A054235 = Reap[ Do[ Do[ r = Reduce[ i^3 == j^3 + Binomial[k+2, 3], k, Integers]; If[r =!= False, ijk = {i, j, k} /. ToRules[r]; Print[ijk]; Sow[ijk[[2]]]; Break[]], {j, 1, i-2}], {i, A054234}]][[2, 1]] (* Jean-François Alcover, Jan 03 2013, updated Jan 24 2020 *)
CROSSREFS
Sequence in context: A005693 A158419 A074011 * A016547 A081541 A344105
KEYWORD
nice,nonn
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 07 2000
EXTENSIONS
More terms from Jon E. Schoenfield, Jan 19 2009
STATUS
approved