[go: up one dir, main page]

login
A047526
Numbers that are congruent to {1, 2, 7} mod 8.
1
1, 2, 7, 9, 10, 15, 17, 18, 23, 25, 26, 31, 33, 34, 39, 41, 42, 47, 49, 50, 55, 57, 58, 63, 65, 66, 71, 73, 74, 79, 81, 82, 87, 89, 90, 95, 97, 98, 103, 105, 106, 111, 113, 114, 119, 121, 122, 127, 129, 130, 135, 137, 138, 143, 145, 146, 151, 153, 154, 159
OFFSET
1,2
COMMENTS
Numbers h such that Fibonacci(h) mod 3 = 1. - Bruno Berselli, Oct 18 2017
FORMULA
From Chai Wah Wu, May 30 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4), for n > 4.
G.f.: x*(x^3 + 5*x^2 + x + 1)/(x^4 - x^3 - x + 1). (End)
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = 8*n/3 - 2 + cos(2*n*Pi/3) + 5*sin(2*n*Pi/3)/(3*sqrt(3)).
a(3*k) = 8*k-1, a(3*k-1) = 8*k-6, a(3*k-2) = 8*k-7. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = ((2*sqrt(2+sqrt(2))-1)*Pi + log(3 - 2*sqrt(2)))/(8*sqrt(2)). - Amiram Eldar, Dec 19 2021
MAPLE
A047526:=n->8*n/3-2+cos(2*n*Pi/3)+5*sin(2*n*Pi/3)/(3*sqrt(3)): seq(A047526(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
MATHEMATICA
LinearRecurrence[{1, 0, 1, -1}, {1, 2, 7, 9}, 50] (* G. C. Greubel, May 30 2016 *)
#+{1, 2, 7}&/@(8*Range[0, 20])//Flatten (* Harvey P. Dale, Oct 17 2021 *)
PROG
(Magma) [n: n in [0..150] | n mod 8 in [1, 2, 7]]; // Wesley Ivan Hurt, Jun 10 2016
CROSSREFS
Cf. A000045.
Cf. A008586 (numbers h such that Fibonacci(h) mod 3 = 0).
Cf. A047443 (numbers h such that Fibonacci(h) mod 3 = 2).
Sequence in context: A323528 A073074 A034796 * A221280 A166570 A003668
KEYWORD
nonn,easy
STATUS
approved