# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a047526 Showing 1-1 of 1 %I A047526 #30 Sep 08 2022 08:44:57 %S A047526 1,2,7,9,10,15,17,18,23,25,26,31,33,34,39,41,42,47,49,50,55,57,58,63, %T A047526 65,66,71,73,74,79,81,82,87,89,90,95,97,98,103,105,106,111,113,114, %U A047526 119,121,122,127,129,130,135,137,138,143,145,146,151,153,154,159 %N A047526 Numbers that are congruent to {1, 2, 7} mod 8. %C A047526 Numbers h such that Fibonacci(h) mod 3 = 1. - _Bruno Berselli_, Oct 18 2017 %H A047526 G. C. Greubel, Table of n, a(n) for n = 1..1000 %H A047526 Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1). %F A047526 From _Chai Wah Wu_, May 30 2016: (Start) %F A047526 a(n) = a(n-1) + a(n-3) - a(n-4), for n > 4. %F A047526 G.f.: x*(x^3 + 5*x^2 + x + 1)/(x^4 - x^3 - x + 1). (End) %F A047526 From _Wesley Ivan Hurt_, Jun 10 2016: (Start) %F A047526 a(n) = 8*n/3 - 2 + cos(2*n*Pi/3) + 5*sin(2*n*Pi/3)/(3*sqrt(3)). %F A047526 a(3*k) = 8*k-1, a(3*k-1) = 8*k-6, a(3*k-2) = 8*k-7. (End) %F A047526 Sum_{n>=1} (-1)^(n+1)/a(n) = ((2*sqrt(2+sqrt(2))-1)*Pi + log(3 - 2*sqrt(2)))/(8*sqrt(2)). - _Amiram Eldar_, Dec 19 2021 %p A047526 A047526:=n->8*n/3-2+cos(2*n*Pi/3)+5*sin(2*n*Pi/3)/(3*sqrt(3)): seq(A047526(n), n=1..100); # _Wesley Ivan Hurt_, Jun 10 2016 %t A047526 LinearRecurrence[{1, 0, 1, -1}, {1, 2, 7, 9}, 50] (* _G. C. Greubel_, May 30 2016 *) %t A047526 #+{1,2,7}&/@(8*Range[0,20])//Flatten (* _Harvey P. Dale_, Oct 17 2021 *) %o A047526 (Magma) [n: n in [0..150] | n mod 8 in [1,2,7]]; // _Wesley Ivan Hurt_, Jun 10 2016 %Y A047526 Cf. A000045. %Y A047526 Cf. A008586 (numbers h such that Fibonacci(h) mod 3 = 0). %Y A047526 Cf. A047443 (numbers h such that Fibonacci(h) mod 3 = 2). %K A047526 nonn,easy %O A047526 1,2 %A A047526 _N. J. A. Sloane_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE