[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032200
Number of rooted compound windmills (mobiles) of n nodes.
11
1, 1, 2, 4, 9, 20, 51, 128, 345, 940, 2632, 7450, 21434, 62174, 182146, 537369, 1596133, 4767379, 14312919, 43162856, 130695821, 397184252, 1211057426, 3703794849, 11358759346, 34923477315, 107627138308, 332404636811
OFFSET
1,3
COMMENTS
Also the number of locally necklace plane trees with n nodes, where a plane tree is locally necklace if the sequence of branches directly under any given node is lexicographically minimal among its cyclic permutations. - Gus Wiseman, Sep 05 2018
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 241 (3.3.84).
FORMULA
Shifts left under "CIK" (necklace, indistinct, unlabeled) transform.
EXAMPLE
From Gus Wiseman, Sep 05 2018: (Start)
The a(5) = 9 locally necklace plane trees:
((((o))))
(((oo)))
((o(o)))
(o((o)))
((o)(o))
((ooo))
(o(oo))
(oo(o))
(oooo)
(End)
MATHEMATICA
neckQ[q_]:=Array[OrderedQ[{q, RotateRight[q, #]}]&, Length[q]-1, 1, And];
neckplane[n_]:=If[n==1, {{}}, Join@@Table[Select[Tuples[neckplane/@c], neckQ], {c, Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[neckplane[n]], {n, 10}] (* Gus Wiseman, Sep 05 2018 *)
PROG
(PARI)
CIK(p, n)={sum(d=1, n, eulerphi(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
seq(n)={my(p=O(1)); for(i=1, n, p=1+CIK(x*p, i)); Vec(p)} \\ Andrew Howroyd, Jun 20 2018
KEYWORD
nonn,eigen
STATUS
approved