[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of rooted compound windmills (mobiles) of n nodes.
11

%I #15 Sep 11 2018 05:01:40

%S 1,1,2,4,9,20,51,128,345,940,2632,7450,21434,62174,182146,537369,

%T 1596133,4767379,14312919,43162856,130695821,397184252,1211057426,

%U 3703794849,11358759346,34923477315,107627138308,332404636811

%N Number of rooted compound windmills (mobiles) of n nodes.

%C Also the number of locally necklace plane trees with n nodes, where a plane tree is locally necklace if the sequence of branches directly under any given node is lexicographically minimal among its cyclic permutations. - _Gus Wiseman_, Sep 05 2018

%D F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 241 (3.3.84).

%H Andrew Howroyd, <a href="/A032200/b032200.txt">Table of n, a(n) for n = 1..200</a>

%H C. G. Bower, <a href="/transforms2.html">Transforms (2)</a>

%H <a href="/index/Mo#mobiles">Index entries for sequences related to mobiles</a>

%F Shifts left under "CIK" (necklace, indistinct, unlabeled) transform.

%e From _Gus Wiseman_, Sep 05 2018: (Start)

%e The a(5) = 9 locally necklace plane trees:

%e ((((o))))

%e (((oo)))

%e ((o(o)))

%e (o((o)))

%e ((o)(o))

%e ((ooo))

%e (o(oo))

%e (oo(o))

%e (oooo)

%e (End)

%t neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];

%t neckplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[neckplane/@c],neckQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];

%t Table[Length[neckplane[n]],{n,10}] (* _Gus Wiseman_, Sep 05 2018 *)

%o (PARI)

%o CIK(p,n)={sum(d=1, n, eulerphi(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}

%o seq(n)={my(p=O(1));for(i=1, n, p=1+CIK(x*p, i)); Vec(p)} \\ _Andrew Howroyd_, Jun 20 2018

%Y Cf. A029768, A038037, A055340.

%Y Cf. A000108, A007853, A032171, A254040, A304173, A304175, A317852.

%K nonn,eigen

%O 1,3

%A _Christian G. Bower_