[go: up one dir, main page]

login
A035631
Number of partitions of n into parts 5k+1 and 5k+2 with at least one part of each type.
3
0, 0, 1, 1, 2, 2, 3, 5, 6, 8, 9, 11, 15, 18, 23, 26, 31, 38, 45, 55, 62, 73, 85, 100, 118, 135, 155, 178, 205, 238, 269, 308, 347, 397, 452, 512, 578, 650, 733, 829, 929, 1045, 1164, 1307, 1461, 1635, 1822, 2026, 2254, 2511, 2787, 3098, 3422, 3796, 4196
OFFSET
1,5
LINKS
FORMULA
G.f.: (-1 + 1/Product_{k>=0} (1 - x^(5 k + 1)))*(-1 + 1/Product_{k>=0} (1 - x^(5 k + 2))). - Robert Price, Aug 16 2020
MATHEMATICA
nmax = 55; s1 = Range[0, nmax/5]*5 + 1; s2 = Range[0, nmax/5]*5 + 2;
Table[Count[IntegerPartitions[n, All, s1~Join~s2],
x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 06 2020 *)
nmax = 55; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(5 k + 1)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(5 k + 2)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 16 2020 *)
KEYWORD
nonn
STATUS
approved