OFFSET
1,4
COMMENTS
The corresponding partitions with 2 in the definition instead of 3 are the complete partitions, which are counted by A126796.
The qualifier 'into at least 3 parts' is only relevant for n = 1 or 2. It is included because otherwise the condition would be vacuously true for all partitions of 1 and 2. It seems neater to consider that there are no partitions of 1 and 2 of this form.
LINKS
EXAMPLE
The valid partitions of 5 are (2,1,1,1) and (1,1,1,1,1). Given any partition of 5 into 3 parts, it contains one part of at least 2. Therefore we can make any partition of 5 into 3 parts by joining (2,1,1,1) into three sums. (3, 1, 1) is not a valid partition, since (2,2,1) is a partition of 5 into 3 parts which cannot be made by summing elements from (3,1,1). Therefore a(5) = 2.
MATHEMATICA
ric[p_, {x_, y_}] := If[x==0, If[y > Total[p], False, y==0 || AnyTrue[ Reverse@ Union[p], y>=# && ric[ DeleteCases[p, #, 1, 1], {0, y-#}] &]], If[x >= Total[p], False, AnyTrue[ Reverse@ Union@ p, x>=# && ric[ DeleteCases[p, #, 1, 1], {x-#, y}] &]]]; chk[p_] := AllTrue[ Rest /@ IntegerPartitions[Plus @@ p, {3}], ric[p, #] &]; a[n_] := Length@ Select[ IntegerPartitions[n, {3, Infinity}], chk]; Array[a, 24] (* Giovanni Resta, Jul 18 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jack W Grahl, Feb 02 2014
STATUS
approved