[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A021007
Let q_k = p*(p+2) be product of k-th pair of twin primes; sequence gives values of p+2 such that (q_k)^2 > q_{k-i}*q_{k+i} for all 1 <= i <= k-1.
2
5, 13, 31, 61, 103, 139, 181, 193, 229, 421, 523, 571, 601, 811, 823, 1021, 1231, 1279, 1291, 1609, 1669, 1873, 2083, 2551, 2659, 2689, 2971, 3121, 3253, 3331, 3361, 3769, 3823, 3919, 4003, 5233, 5419, 5479, 6091, 6271, 6553, 6661, 6691, 8221, 8821, 8971
OFFSET
1,1
COMMENTS
Even if there are infinitely many twin primes, it is not clear that this sequence is infinite. The Hardy-Littlewood conjecture implies that there are infinitely many twin primes where p+2 is not in the sequence. - Robert Israel, Apr 02 2014
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
(11*13)^2 > (5*7)*(17*19): (11*13)^2 > (3*5)*(29*31).
MAPLE
N:= 20000:
Primes:= [seq(ithprime(i), i=1..N)]:
Twink:= select(t-> (Primes[t+1]=Primes[t]+2), [$1..N-1]):
Qk:= [seq(Primes[i]*Primes[i+1], i=Twink)]:
filter:= proc(k)
local T, i;
T:= Qk[k]^2;
for i from 1 to k-1 do
if Qk[k-i]*Qk[k+i]>=T then return false fi
od;
true
end;
R:= select(filter, [$1 .. floor(nops(Twink)/2)]):
A021007:= map(k -> Primes[Twink[k]+1], R); # Robert Israel, Apr 02 2014
PROG
(PARI) twins=List(); p=3; forprime(q=5, 1e5, if(q-p==2, listput(twins, q)); p=q); for(k=1, (#twins+1)\2, for(i=1, k-1, if(twins[k]^2 < twins[k-i]*twins[k+i], next(2))); print1(twins[k]", ")) \\ Charles R Greathouse IV, Apr 02 2014
CROSSREFS
Sequence in context: A238742 A023261 A165888 * A109419 A335307 A067333
KEYWORD
nonn
EXTENSIONS
a(1) inserted by Robert Israel, Apr 02 2014
STATUS
approved