[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A021011
Pisot sequence P(6,11), a(0)=6, a(1)=11, a(n+1) is the nearest integer to a(n)^2/a(n-1).
1
6, 11, 20, 36, 65, 117, 211, 381, 688, 1242, 2242, 4047, 7305, 13186, 23802, 42965, 77556, 139996, 252706, 456158, 823408, 1486329, 2682964, 4843003, 8742077, 15780273, 28484880, 51417893, 92814143, 167538276, 302422379, 545900898
OFFSET
0,1
FORMULA
G.f.: (3x^5+2x^4+x^3+4x^2-x+6)/(-x^6-x^3+x^2-2x+1) (conjectured). - Ralf Stephan, May 12 2004
MATHEMATICA
RecurrenceTable[{a[n] == Ceiling[a[n - 1]^2/a[n - 2] - 1/2], a[0] == 6, a[1] == 11}, a, {n, 0, 31}] (* or *)
First@ Transpose[NestList[{#2, Round[#2^2/#1]} & @@ # &, {6, 11}, 31]] (* Michael De Vlieger, Aug 08 2016, after Harvey P. Dale at A021008 *)
PROG
(PARI) pisotP(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = ceil(a[n-1]^2/a[n-2]-1/2));
a
}
pisotP(50, 6, 11) \\ Colin Barker, Aug 08 2016
CROSSREFS
Sequence in context: A365351 A007745 A188556 * A000382 A208670 A208726
KEYWORD
nonn
AUTHOR
STATUS
approved