[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028725
a(n) = floor(n/2) * floor((n-1)/2) * floor((n-2)/2) * floor((n-3)/2) * floor((n-4)/2) / 12.
3
0, 0, 0, 0, 0, 0, 1, 3, 12, 24, 60, 100, 200, 300, 525, 735, 1176, 1568, 2352, 3024, 4320, 5400, 7425, 9075, 12100, 14520, 18876, 22308, 28392, 33124, 41405, 47775, 58800, 67200, 81600, 92480, 110976, 124848, 148257, 165699, 194940, 216600, 252700, 279300
OFFSET
0,8
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,5,-5,-10,10,10,-10,-5,5,1,-1).
FORMULA
a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3) - 10*a(n-4) + 10*a(n-5) + 10*a(n-6) - 10*a(n-7) - 5*a(n-8) + 5*a(n-9) + a(n-10) - a(n-11), with a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=0, a(6)=1, a(7)=3, a(8)=12, a(9)=24, a(10)=60. - Harvey P. Dale, Jun 26 2012
G.f.: x^6*(1+2*x+4*x^2+2*x^3+x^4)/((1-x)^6*(1+x)^5). - Colin Barker, Mar 01 2015
From R. J. Mathar, Sep 23 2021: (Start)
a(2*n+1) = A004282(n-2).
a(2*n) = A004302(n-2).
a(n) = A028724(n)*A002620(n-4)/6. (End)
From G. C. Greubel, Apr 08 2022: (Start)
a(n) = (1/768)*((-1)^n*(45 -65*n +38*n^2 -10*n^3 +n^4) -45 +193*n -230*n^2 +114*n^3 -25*n^4 +2*n^5).
E.g.f.: (1/768)*((45 +36*x +15*x^2 +4*x^3 +x^4)*exp(-x) + (-45 +54*x -33*x^2 + 14*x^3 -5*x^4 +2*x^5)*exp(x)). (End)
MATHEMATICA
Table[(Times@@Floor/@(n/2-Range[0, 4]/2))/12, {n, 0, 50}] (* or *) LinearRecurrence[ {1, 5, -5, -10, 10, 10, -10, -5, 5, 1, -1}, {0, 0, 0, 0, 0, 0, 1, 3, 12, 24, 60}, 50] (* Harvey P. Dale, Jun 26 2012 *)
PROG
(PARI) concat([0, 0, 0, 0, 0, 0], Vec(x^6*(x^4+2*x^3+4*x^2+2*x+1)/((x-1)^6*(x+1)^5) + O(x^100))) \\ Colin Barker, Mar 01 2015
(Magma) [(&*[Floor((n-j)/2):j in [0..4]])/12: n in [0..60]]; // G. C. Greubel, Apr 08 2022
(SageMath) [(1/768)*((-1)^n*(45 -65*n +38*n^2 -10*n^3 +n^4) -45 +193*n -230*n^2 +114*n^3 -25*n^4 +2*n^5) for n in (0..60)] # G. C. Greubel, Apr 08 2022
CROSSREFS
Bisections: A004282, A004302.
Sequence in context: A050180 A319422 A272173 * A047166 A076506 A206917
KEYWORD
nonn,easy
STATUS
approved