Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Apr 09 2022 01:27:25
%S 0,0,0,0,0,0,1,3,12,24,60,100,200,300,525,735,1176,1568,2352,3024,
%T 4320,5400,7425,9075,12100,14520,18876,22308,28392,33124,41405,47775,
%U 58800,67200,81600,92480,110976,124848,148257,165699,194940,216600,252700,279300
%N a(n) = floor(n/2) * floor((n-1)/2) * floor((n-2)/2) * floor((n-3)/2) * floor((n-4)/2) / 12.
%H Harvey P. Dale, <a href="/A028725/b028725.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (1,5,-5,-10,10,10,-10,-5,5,1,-1).
%F a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3) - 10*a(n-4) + 10*a(n-5) + 10*a(n-6) - 10*a(n-7) - 5*a(n-8) + 5*a(n-9) + a(n-10) - a(n-11), with a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=0, a(6)=1, a(7)=3, a(8)=12, a(9)=24, a(10)=60. - _Harvey P. Dale_, Jun 26 2012
%F G.f.: x^6*(1+2*x+4*x^2+2*x^3+x^4)/((1-x)^6*(1+x)^5). - _Colin Barker_, Mar 01 2015
%F From _R. J. Mathar_, Sep 23 2021: (Start)
%F a(2*n+1) = A004282(n-2).
%F a(2*n) = A004302(n-2).
%F a(n) = A028724(n)*A002620(n-4)/6. (End)
%F From _G. C. Greubel_, Apr 08 2022: (Start)
%F a(n) = (1/768)*((-1)^n*(45 -65*n +38*n^2 -10*n^3 +n^4) -45 +193*n -230*n^2 +114*n^3 -25*n^4 +2*n^5).
%F E.g.f.: (1/768)*((45 +36*x +15*x^2 +4*x^3 +x^4)*exp(-x) + (-45 +54*x -33*x^2 + 14*x^3 -5*x^4 +2*x^5)*exp(x)). (End)
%t Table[(Times@@Floor/@(n/2-Range[0,4]/2))/12,{n,0,50}] (* or *) LinearRecurrence[ {1,5,-5,-10,10,10,-10,-5,5,1,-1}, {0,0,0,0,0,0,1,3,12,24,60}, 50] (* _Harvey P. Dale_, Jun 26 2012 *)
%o (PARI) concat([0,0,0,0,0,0], Vec(x^6*(x^4+2*x^3+4*x^2+2*x+1)/((x-1)^6*(x+1)^5) + O(x^100))) \\ _Colin Barker_, Mar 01 2015
%o (Magma) [(&*[Floor((n-j)/2):j in [0..4]])/12: n in [0..60]]; // _G. C. Greubel_, Apr 08 2022
%o (SageMath) [(1/768)*((-1)^n*(45 -65*n +38*n^2 -10*n^3 +n^4) -45 +193*n -230*n^2 +114*n^3 -25*n^4 +2*n^5) for n in (0..60)] # _G. C. Greubel_, Apr 08 2022
%Y Bisections: A004282, A004302.
%Y Cf. A002620, A028724.
%K nonn,easy
%O 0,8
%A _N. J. A. Sloane_