[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004282
a(n) = n*(n+1)^2*(n+2)^2/12.
3
0, 3, 24, 100, 300, 735, 1568, 3024, 5400, 9075, 14520, 22308, 33124, 47775, 67200, 92480, 124848, 165699, 216600, 279300, 355740, 448063, 558624, 690000, 845000, 1026675, 1238328, 1483524, 1766100, 2090175
OFFSET
0,2
FORMULA
a(n) = C(2+n, 2)*C(2+n, 3) = A000217(n+1)*A000292(n). - Zerinvary Lajos, Jan 10 2006
a(n-1) = Sum_{1 <= x_1, x_2 <= n} x_1*(det V(x_1,x_2))^2 = Sum_{1 <= i,j <= n} i*(i-j)^2, where V(x_1,x_2) is the Vandermonde matrix of order 2. - Peter Bala, Sep 21 2007
G.f.: x*(3+6*x+x^2)/(1-x)^6. - Colin Barker, Feb 09 2012
a(n) = Sum_{k=0..n} Sum_{i=0..n} (n-i+1) * C(k+1,k-1). - Wesley Ivan Hurt, Sep 21 2017
a(n) = A004302(n+1) - A000537(n+1). - J. M. Bergot, Mar 28 2018
From Amiram Eldar, May 29 2022: (Start)
Sum_{n>=1} 1/a(n) = 30 - 3*Pi^2.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/2 - 24*log(2) + 12. (End)
MAPLE
a:= n-> binomial(2+n, 2)*binomial(2+n, 3): seq(a(n), n=0..31); # Zerinvary Lajos, Apr 26 2007
MATHEMATICA
Table[n*(n+1)^2*(n+2)^2/12, {n, 0, 40} (* Vincenzo Librandi, Feb 09 2012 *)
PROG
(Magma) [n*(n+1)^2*(n+2)^2/12: n in [0..50]]; // Vincenzo Librandi, Feb 09 2012
(PARI) a(n) = binomial(n+2, 2)*binomial(n+2, 3); \\ Charles R Greathouse IV, Feb 09 2012
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved