[go: up one dir, main page]

login
A027467
Triangle whose (n,k)-th entry is 15^(n-k)*binomial(n,k).
7
1, 15, 1, 225, 30, 1, 3375, 675, 45, 1, 50625, 13500, 1350, 60, 1, 759375, 253125, 33750, 2250, 75, 1, 11390625, 4556250, 759375, 67500, 3375, 90, 1, 170859375, 79734375, 15946875, 1771875, 118125, 4725, 105, 1, 2562890625, 1366875000, 318937500, 42525000, 3543750, 189000, 6300, 120, 1
OFFSET
0,2
FORMULA
Numerators of lower triangle of (a[i,j])^4 where a[i,j] = binomial(i-1, j-1)/2^(i-1) if j<=i, 0 if j>i.
Sum_{k=0..n} T(n,k)*x^k = (15 + x)^n.
EXAMPLE
Triangle begins:
1;
15, 1;
225, 30, 1;
3375, 675, 45, 1;
50625, 13500, 1350, 60, 1;
759375, 253125, 33750, 2250, 75, 1;
11390625, 4556250, 759375, 67500, 3375, 90, 1;
170859375, 79734375, 15946875, 1771875, 118125, 4725, 105, 1;
2562890625, 1366875000, 318937500, 42525000, 3543750, 189000, 6300, 120, 1;
MATHEMATICA
Table[Binomial[n, k]15^(n-k), {n, 0, 10}, {k, 0, n}]//Flatten (* Harvey P. Dale, Dec 31 2017 *)
PROG
(Magma) [(15)^(n-k)*Binomial(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 12 2021
(Sage) flatten([[(15)^(n-k)*binomial(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 12 2021
CROSSREFS
Sequences of the form q^(n-k)*binomial(n, k): A007318 (q=1), A038207 (q=2), A027465 (q=3), A038231 (q=4), A038243 (q=5), A038255 (q=6), A027466 (q=7), A038279 (q=8), A038291 (q=9), A038303 (q=10), A038315 (q=11), A038327 (q=12), A133371 (q=13), A147716 (q=14), this sequence (q=15).
Sequence in context: A131514 A049327 A030527 * A049375 A049224 A223517
KEYWORD
nonn,tabl
EXTENSIONS
Simpler definition from Philippe Deléham, Nov 10 2008
STATUS
approved