OFFSET
0,2
COMMENTS
Triangle T(n,k), read by rows, given by [14, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n,k) = binomial(n,k) * 14^(n-k).
G.f.: 1/(1 - 14*x - x*y). - R. J. Mathar, Aug 12 2015
Sum_{k=0..n} T(n, k) = 15^n = A001024(n). - G. C. Greubel, May 15 2021
EXAMPLE
Triangle begins :
1;
14, 1;
196, 28, 1;
2744, 588, 42, 1;
38416, 10976, 1176, 56, 1;
537824, 192080, 27440, 1960, 70, 1;
MATHEMATICA
With[{m=8}, CoefficientList[CoefficientList[Series[1/(1-14*x-x*y), {x, 0, m}, {y, 0, m}], x], y]]//Flatten (* Georg Fischer, Feb 17 2020 *)
PROG
(Magma) [14^(n-k)*Binomial(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 15 2021
(Sage) flatten([[14^(n-k)*binomial(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 15 2021
CROSSREFS
KEYWORD
AUTHOR
Philippe Deléham, Nov 11 2008
EXTENSIONS
a(36) corrected by Georg Fischer, Feb 17 2020
STATUS
approved