[go: up one dir, main page]

login
A010709
Constant sequence: the all 4's sequence.
24
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
OFFSET
0,1
COMMENTS
From Klaus Brockhaus, May 25 2010: (Start)
Continued fraction expansion of 2+sqrt(5).
Decimal expansion of 4/9.
Inverse binomial transform of A020707. (End)
LINKS
Tom Edgar, Proof without words: sum of powers of 4/9, Math. Mag. 89 no. 3 (2016) 191.
Tanya Khovanova, Recursive Sequences
Dominika Závacká, Cristina Dalfó, and Miquel Angel Fiol, Integer sequences from k-iterated line digraphs, CEUR: Proc. 24th Conf. Info. Tech. - Appl. and Theory (ITAT 2024) Vol 3792, 156-161. See p. 161, Table 2.
FORMULA
From Klaus Brockhaus, May 25 2010: (Start)
a(n) = 4.
G.f.: 4/(1-x). (End)
E.g.f.: 4*e^x. - Vincenzo Librandi, Jan 29 2012
PROG
(PARI) a(n) = 4 \\ Charles R Greathouse IV, Apr 07 2012
(Maxima) makelist(4, n, 0, 30); /* Martin Ettl, Nov 09 2012 */
(Python)
def A010709(n): return 4 # Chai Wah Wu, Mar 22 2023
CROSSREFS
From Klaus Brockhaus, May 25 2010: (Start)
Equals 4*A000012, 2*A007395, A010731/2, A010855/4, A010871/8.
Cf. A098317 (decimal expansion of 2+sqrt(5)), A020707 (2^(n+2)). (End)
Sequence in context: A088849 A251539 A123932 * A138908 A032564 A141248
KEYWORD
nonn,cons,easy
STATUS
approved