[go: up one dir, main page]

login
A017460
a(n) = (11*n + 5)^12.
12
244140625, 281474976710656, 150094635296999121, 9065737908494995456, 191581231380566414401, 2176782336000000000000, 16409682740640811134241, 92420056270299898187776, 418596297479370673535601, 1601032218567680790102016
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
FORMULA
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (244140625 +281471802882531*x +146435479642729343*x^2 + 7136462627993219301*x^3 +85353518454518704170*x^4 +350628073514443644414 *x^5 +569002784856695826846*x^6 +380284494715132979466*x^7 + 101126771751016700469*x^8 +9408164121360836975*x^9 +224644345794247731* x^10 +582593939059393*x^11 +2176782336*x^12)/(1-x)^13.
E.g.f.: (244140625 +281474732570031*x +74765842793859217*x^2 + 1436049737881664906*x^3 +6509071735779405221*x^4 +10900283493364894200* x^5 +8393947455360064312*x^6 +3347919415332356436*x^7 + 736963256712968142*x^8 +91671288202929325*x^9 +6335345645917255*x^10 + 224254973100246*x^11 +3138428376721*x^12)*exp(x). (End)
MAPLE
seq((11*n+5)^12, n=0..20); # G. C. Greubel, Sep 19 2019
MATHEMATICA
(11*Range[21] -6)^12 (* G. C. Greubel, Sep 19 2019 *)
PROG
(Magma) [(11*n+5)^12: n in [0..10]]; // Vincenzo Librandi, Sep 03 2011
(PARI) vector(20, n, (11*n-6)^12) \\ G. C. Greubel, Sep 19 2019
(Sage) [(11*n+5)^12 for n in (0..20)] # G. C. Greubel, Sep 19 2019
(GAP) List([0..20], n-> (11*n+5)^12); # G. C. Greubel, Sep 19 2019
CROSSREFS
Powers of the form (11*n+5)^m: A017449 (m=1), A017450 (m=2), A017451 (m=3), A017452 (m=4), A017453 (m=5), A017454 (m=6), A017455 (m=7), A017456 (m=8), A017457 (m=9), A017458 (m=10), A017459 (m=11), this sequence (m=12).
Sequence in context: A017136 A017232 A017340 * A017592 A146073 A046398
KEYWORD
nonn,easy
STATUS
approved