[go: up one dir, main page]

login
A017454
a(n) = (11*n + 5)^6.
12
15625, 16777216, 387420489, 3010936384, 13841287201, 46656000000, 128100283921, 304006671424, 646990183449, 1265319018496, 2313060765625, 4001504141376, 6611856250609, 10509215371264, 16157819263041, 24137569000000, 35161828327081, 50096498540544, 69980368892329
OFFSET
0,1
FORMULA
a(n) = 7*a(n-1) -21*a(n-2) +35*a(n-3) -35*a(n-4) +21*a(n-5) -7*a(n-6) + a(n-7); a(0)=15625, a(1)=16777216, a(2)=387420489, a(3)=3010936384, a(4)=13841287201, a(5)=46656000000, a(6)=128100283921. - Harvey P. Dale, Dec 12 2013
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (15625 +16667841*x +270308102*x^2 +650767622*x^3 +313907097*x^4 +23810977*x^5 +46656*x^6)/(1-x)^7.
E.g.f.: (15625 +16761591*x +176940841*x^2 +316498490*x^3 +168957140*x^4 +31404945*x^5 +1771561*x^6)*exp(x). (End)
MAPLE
seq((11*n+5)^6, n=0..20); # G. C. Greubel, Sep 18 2019
MATHEMATICA
(11*Range[0, 30]+5)^6 (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {15625, 16777216, 387420489, 3010936384, 13841287201, 46656000000, 128100283921}, 30] (* Harvey P. Dale, Dec 12 2013 *)
PROG
(Magma) [(11*n+5)^6: n in [0..20]]; // Vincenzo Librandi, Sep 03 2011
(PARI) vector(20, n, (11*n-6)^6) \\ G. C. Greubel, Sep 18 2019
(Sage) [(11*n+5)^6 for n in (0..20)] # G. C. Greubel, Sep 18 2019
(GAP) List([0..20], n-> (11*n+5)^6); # G. C. Greubel, Sep 18 2019
CROSSREFS
Powers of the form (11*n+5)^m: A017449 (m=1), A017450 (m=2), A017451 (m=3), A017452 (m=4), A017453 (m=5), this sequence (m=6), A017455 (m=7), A017456 (m=8), A017457 (m=9), A017458 (m=10), A017459 (m=11), A017460 (m=12).
Sequence in context: A223232 A017334 A265934 * A223262 A017586 A223320
KEYWORD
nonn,easy
STATUS
approved