[go: up one dir, main page]

login
A017455
a(n) = (11*n + 5)^7.
12
78125, 268435456, 10460353203, 114415582592, 678223072849, 2799360000000, 9095120158391, 24928547056768, 60170087060757, 131593177923584, 266001988046875, 504189521813376, 905824306333433, 1555363874947072, 2569093262823519, 4103386730000000, 6364290927201661, 9618527719784448
OFFSET
0,1
LINKS
FORMULA
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (78125 +267810456*x +8315057055*x^2 +38244574736*x^3 +40761385011* x^4 +10218057336*x^5 +408099185*x^6 +279936*x^7)/(1-x)^8.
E.g.f.: (78125 +268357331*x +4961780208*x^2 +13973291871*x^3 + 11760383250*x^4 +3742825240*x^5 +471235226*x^6 +19487171*x^7)*exp(x). (End)
MAPLE
seq((11*n+5)^7, n=0..20); # G. C. Greubel, Sep 19 2019
MATHEMATICA
(11*Range[21] -6)^7 (* G. C. Greubel, Sep 19 2019 *)
LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {78125, 268435456, 10460353203, 114415582592, 678223072849, 2799360000000, 9095120158391, 24928547056768}, 20] (* Harvey P. Dale, Apr 22 2024 *)
PROG
(Magma) [(11*n+5)^7: n in [0..20]]; // Vincenzo Librandi, Sep 03 2011
(PARI) vector(20, n, (11*n-6)^7) \\ G. C. Greubel, Sep 19 2019
(Sage) [(11*n+5)^7 for n in (0..20)] # G. C. Greubel, Sep 19 2019
(GAP) List([0..20], n-> (11*n+5)^7); # G. C. Greubel, Sep 19 2019
CROSSREFS
Powers of the form (11*n+5)^m: A017449 (m=1), A017450 (m=2), A017451 (m=3), A017452 (m=4), A017453 (m=5), A017454 (m=6), this sequence (m=7), A017456 (m=8), A017457 (m=9), A017458 (m=10), A017459 (m=11), A017460 (m=12).
Sequence in context: A017227 A265935 A017335 * A017587 A237565 A219333
KEYWORD
nonn,easy
STATUS
approved