[go: up one dir, main page]

login
A001471
Number of degree-n permutations of order exactly 3.
(Formerly M1833 N0727)
28
0, 0, 0, 2, 8, 20, 80, 350, 1232, 5768, 31040, 142010, 776600, 4874012, 27027728, 168369110, 1191911840, 7678566800, 53474964992, 418199988338, 3044269834280, 23364756531620, 199008751634000, 1605461415071822
OFFSET
0,4
COMMENTS
a(n) is the number of non-symmetric permutation matrices A of dimension n such that A^2 is the transpose of A. - Torlach Rush, Jul 09 2020
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
L. Moser and M. Wyman, On solutions of x^d = 1 in symmetric groups, Canad. J. Math., 7 (1955), 159-168.
FORMULA
From Henry Bottomley, Jan 26 2001: (Start)
a(n) = a(n-1) + (1 + a(n-3))*(n-1)(n-2).
a(n) = Sum_{j=1..floor(n/3)} n!/(j!*(n-3*j)!*(3^j)).
a(n) = A001470(n) - 1. (End)
E.g.f.: exp(x + x^3/3) - exp(x).
MATHEMATICA
a[n_] := HypergeometricPFQ[{1/3-n/3, 2/3-n/3, -n/3}, {}, -9] - 1; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Oct 19 2011 *)
nxt[{n_, a_, b_, c_}]:={n+1, b, c, c+(1+a)(n-1)(n-2)}; NestList[nxt, {3, 0, 0, 0}, 25][[;; , 2]] (* Harvey P. Dale, Mar 09 2024 *)
PROG
(PARI) a(n)=sum(j=1, n\3, n!/(j!*(n-3*j)!*(3^j))) \\ Charles R Greathouse IV, Jun 21 2017
(PARI) first(n)=my(v=vector(n+1)); for(i=3, n, v[i+1]=v[i] + (1+v[i-2])*(i-1)*(i-2)); v \\ Charles R Greathouse IV, Jul 10 2020
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^3/3) )); [Factorial(n-1)*b[n]-1: n in [1..m]]; // G. C. Greubel, May 14 2019
(Sage) m = 30; T = taylor(exp(x + x^3/3) -exp(x), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 14 2019
KEYWORD
nonn,easy,nice
STATUS
approved