OFFSET
0,3
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
LINKS
T. D. Noe, Table of n, a(n) for n=0..200
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 25
Vladimir Victorovich Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
L. Moser and M. Wyman, On solutions of x^d = 1 in symmetric groups, Canad. J. Math., 7 (1955), 159-168.
FORMULA
E.g.f.: exp(x + x^2/2 + x^4/4).
D-finite with recurrence: a(0)=1, a(1)=1, a(2)=2, a(3)=4, a(n) = a(n-1) + (n-1)*a(n-2) + (n^3-6*n^2+11*n-6)*a(n-4) for n>3. - H. Palsdottir (hronn07(AT)ru.is), Sep 19 2008
a(n) = n!*Sum_{k=1..n} (1/k!)*(Sum_{j=floor((4*k-n)/3)..k} binomial(k,j) * binomial(j,n-4*k+3*j) * (1/2)^(n-4*k+3*j)*(1/4)^(k-j), n>0. - Vladimir Kruchinin, Sep 07 2010
a(n) ~ n^(3*n/4)*exp(n^(1/4)-3*n/4+sqrt(n)/2-1/8)/2 * (1 - 1/(4*n^(1/4)) + 17/(96*sqrt(n)) + 47/(128*n^(3/4))). - Vaclav Kotesovec, Aug 09 2013
MATHEMATICA
n = 23; CoefficientList[Series[Exp[x+x^2/2+x^4/4], {x, 0, n}], x] * Table[k!, {k, 0, n}] (* Jean-François Alcover, May 18 2011 *)
PROG
(Maxima) a(n):=n!*sum(sum(binomial(k, j)*binomial(j, n-4*k+3*j)*(1/2)^(n-4*k+3*j)*(1/4)^(k-j), j, floor((4*k-n)/3), k)/k!, k, 1, n); /* Vladimir Kruchinin, Sep 07 2010 */
(PARI) N=33; x='x+O('x^N); egf=exp(x+x^2/2+x^4/4); Vec(serlaplace(egf)) /* Joerg Arndt, Sep 15 2012 */
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2 +x^4/4) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 14 2019
(Sage) m = 30; T = taylor(exp(x + x^2/2 + x^4/4), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 14 2019
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved