OFFSET
0,3
LINKS
R. J. Mathar, Table of n, a(n) for n = 0..200
FORMULA
a(2n) = A000436(n).
(-1)^n*a(2n+1)=1-sum_{i=0,1,...,n-1} (-1)^i*binomial(2n+1,2i+1)*3^(2n-2i)*a(2i+1). - R. J. Mathar, Nov 19 2006
a(n) = | 3^n*2^(n+1)*lerchphi(-1,-n,1/3) |. - Peter Luschny, Apr 27 2013
a(n) ~ n!*2^(n+1)*3^(n+1/2)/Pi^(n+1) if n is even and a(n) ~ n!*2^(n+1)*3^n/Pi^(n+1) if n is odd. - Vaclav Kotesovec, Jun 25 2013
a(n) = (-1)^floor(n/2)*3^n*skp(n, 1/3), where skp(n,x) are the Swiss-Knife polynomials A153641. - Peter Luschny, Apr 19 2014
MATHEMATICA
CoefficientList[Series[(Sin[x]+Cos[x])/Cos[3*x], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 25 2013 *)
Table[Abs[EulerE[n, 1/3]] 6^n, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 21 2015 *)
PROG
(Sage)
from mpmath import mp, lerchphi
mp.dps = 32; mp.pretty = True
def A000810(n): return abs(3^n*2^(n+1)*lerchphi(-1, -n, 1/3))
[int(A000810(n)) for n in (0..17)] # Peter Luschny, Apr 27 2013
(PARI) x='x+O('x^66); v=Vec(serlaplace( (sin(x)+cos(x)) / cos(3*x) ) ) \\ Joerg Arndt, Apr 27 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved