[go: up one dir, main page]

login
A000807
Quadratic invariants.
(Formerly M2071 N0819)
9
1, 2, 14, 182, 3614, 99302, 3554894, 159175382, 8654995454, 558786468422, 42086200603694, 3645412584724022, 358877175474325214, 39758874175808713382, 4915216680878167372814, 673139563824188490513302, 101475126400695241802946494, 16744618803625299734467026182
OFFSET
0,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. Touchard, Nombres exponentiels et nombres de Bernoulli, Canad. J. Math., 8 (1956), 305-320.
FORMULA
From Vladeta Jovovic, Sep 08 2002: (Start)
E.g.f.: exp(exp(x)+exp(-x)-2).
a(n) = Sum_{k=0..2*n} (-1)^k*binomial(2*n, k)*A000110(k)*A000110(2*n - k). (End)
a(0) = 1; a(n) = 2 * Sum_{k=1..n} binomial(2*n-1,2*k-1) * a(n-k). - Ilya Gutkovskiy, Jan 27 2020
MAPLE
Bell := combinat:-bell:
A000807 := n -> add(binomial(2*n, k)*(-1)^k*Bell(k)*Bell(2*n-k), k = 0..2*n):
seq(A000807(n), n=0..17); # Peter Luschny, Sep 10 2017
MATHEMATICA
nn = 40; t = Range[0, nn]! CoefficientList[Series[Exp[Exp[x] + Exp[-x] - 2], {x, 0, nn}], x]; Take[t, {1, nn, 2}] (* T. D. Noe, Jun 20 2012 *)
PROG
(Python)
from sympy import binomial, bell
def a(n): return sum(binomial(2*n, k)*(-1)**k*bell(k)*bell(2*n - k) for k in range(2*n + 1))
print([a(n) for n in range(21)]) # Indranil Ghosh, Sep 11 2017
CROSSREFS
Cf. A000110.
Sequence in context: A230991 A258872 A372246 * A191565 A191236 A217905
KEYWORD
nonn
EXTENSIONS
More terms from Vladeta Jovovic, Sep 08 2002
STATUS
approved