OFFSET
1,1
COMMENTS
a(n) possesses the following property: every i not exceeding a(n)/2 for which (a(n),i)>1 does not divide binomial(a(n)-i-1,i-1). Numbers with this property are called "binomial primes". There exist only nine binomial primes which are not terms of this sequence:1,6,8,10,12,20,21,24,33.
LINKS
V. Shevelev, On divisibility of binomial(n-i-1,i-1) by i, Int. J. of Number Theory, 3, no.1 (2007), 119-139.
MATHEMATICA
aQ[n_] := PrimeQ[n] || (PrimeNu[n]<3 && Module[{p = FactorInteger[n][[1, 1]]}, n==p^2 || (n==p(p+2) && PrimeQ[p+2])]); Select[Range[2, 250], aQ] (* Amiram Eldar, Dec 04 2018 *)
PROG
(PARI) isok(n) = isprime(n) || (issquare(n) && isprime(sqrtint(n))) || (issquare(n+1) && isprime(sqrtint(n+1)-1) && isprime(sqrtint(n+1)+1)); \\ Michel Marcus, Dec 04 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 10 2008, May 16 2008
EXTENSIONS
Missing 47 and more terms from Michel Marcus, Dec 04 2018
STATUS
approved