[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008503
9-dimensional centered tetrahedral numbers.
1
1, 11, 66, 286, 1001, 3003, 8008, 19448, 43758, 92378, 184755, 352705, 646580, 1143780, 1960255, 3265757, 5303727, 8416837, 13079352, 19937632, 29860259, 43999449, 63865594, 91416974
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
G.f.: (1-x^10)/(1-x)^11 = (1+x)*(1+x+x^2+x^3+x^4)*(1-x+x^2-x^3+x^4)/(1-x)^10.
a(n) = (2*n + 1)*(5*n^8 + 20*n^7 + 1370*n^6 + 4040*n^5 + 56549*n^4 + 106388*n^3 + 425916*n^2 + 373392*n + 362880)/362880. [Bruno Berselli, Mar 22 2012]
a(n) = A001287(n+10)-A001287(n). - R. J. Mathar, Aug 10 2013
MAPLE
seq(binomial(n+10, 10)-binomial(n, 10), n=0..30); # G. C. Greubel, Nov 09 2019
MATHEMATICA
Table[Binomial[n + 10, 10] - Binomial[n, 10], {n, 0, 23}] (* Bruno Berselli, Mar 22 2012 *)
PROG
(PARI) vector(31, n, b=binomial; b(n+9, 10) - b(n-1, 10) ) \\ G. C. Greubel, Nov 09 2019
(Magma) B:=Binomial; [B(n+10, 10)-B(n, 10): n in [0..30]]; // G. C. Greubel, Nov 09 2019
(Sage) b=binomial; [b(n+10, 10)-b(n, 10) for n in (0..30)] # G. C. Greubel, Nov 09 2019
(GAP) B:=Binomial;; List([0..30], n-> B(n+10, 10)-B(n, 10) ); # G. C. Greubel, Nov 09 2019
CROSSREFS
Sequence in context: A331715 A162628 A247610 * A008493 A001287 A229891
KEYWORD
nonn,easy
STATUS
approved