[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162628
G.f. is the polynomial (1-x^3) * (1-x^6) * (1-x^9) * (1-x^12) * (1-x^15) * (1-x^18) * (1-x^21) * (1-x^24) * (1-x^27) * (1-x^30) * (1-x^33) / (1-x)^11.
1
1, 11, 66, 285, 990, 2937, 7721, 18436, 40689, 84084, 164307, 305955, 546260, 939862, 1564782, 2529737, 3982924, 6122379, 9207990, 13575210, 19650477, 27968304, 39189954, 54123564, 73745529, 99222903, 131936520, 173504485
OFFSET
0,2
COMMENTS
This is a row of the triangle in A162499. Only finitely many terms are nonzero.
LINKS
MATHEMATICA
CoefficientList[ Series[Times @@ (1 - x^(3 Range@11))/(1 - x)^11, {x, 0, 70}], x] (* G. C. Greubel, Jul 06 2018 and slightly modified by Robert G. Wilson v, Jul 23 2018 *)
PROG
(PARI) x='x+O('x^50); Vec((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1- x^18)*(1-x^21)*(1-x^24)*(1-x^27)*(1-x^30)*(1-x^33)/(1-x)^11) \\ G. C. Greubel, Jul 06 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1- x^18)*(1-x^21)*(1-x^24)*(1-x^27)*(1-x^30)*(1-x^33)/(1-x)^11)); // G. C. Greubel, Jul 06 2018
CROSSREFS
Sequence in context: A297751 A063842 A331715 * A247610 A008503 A008493
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 02 2009
STATUS
approved