[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008505
11-dimensional centered tetrahedral numbers.
1
1, 13, 91, 455, 1820, 6188, 18564, 50388, 125970, 293930, 646646, 1352078, 2704155, 5200287, 9657609, 17383405, 30419935, 51889747, 86474661, 141070137, 225666870, 354523390, 547707394, 833099722
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
FORMULA
G.f.: (1-x^12)/(1-x)^13 = (1+x)*(1+x^2)*(1-x+x^2)*(1+x+x^2)*(1-x^2+x^4)/(1-x)^12.
a(n) = (2*n+1)*(3*n^10 +15*n^9 +1835*n^8 +7250*n^7 +195629*n^6 +561575*n^5 +4970585*n^4 +9013640*n^3 +28095948*n^2 +23681520*n +19958400)/19958400. - Bruno Berselli, Mar 22 2012
MAPLE
seq(binomial(n+12, 12)-binomial(n, 12), n=0..30); # G. C. Greubel, Nov 09 2019
MATHEMATICA
Table[Binomial[n + 12, 12] - Binomial[n, 12], {n, 0, 23}] (* Bruno Berselli, Mar 22 2012 *)
LinearRecurrence[{12, -66, 220, -495, 792, -924, 792, -495, 220, -66, 12, -1}, {1, 13, 91, 455, 1820, 6188, 18564, 50388, 125970, 293930, 646646, 1352078}, 20] (* Harvey P. Dale, May 06 2014 *)
PROG
(PARI) vector(31, n, b=binomial; b(n+11, 12) - b(n-1, 12) ) \\ G. C. Greubel, Nov 09 2019
(Magma) B:=Binomial; [B(n+12, 12)-B(n, 12): n in [0..30]]; // G. C. Greubel, Nov 09 2019
(Sage) b=binomial; [b(n+12, 12)-b(n, 12) for n in (0..30)] # G. C. Greubel, Nov 09 2019
(GAP) B:=Binomial;; List([0..30], n-> B(n+12, 12)-B(n, 12) ); # G. C. Greubel, Nov 09 2019
CROSSREFS
Sequence in context: A188352 A162631 A247611 * A008495 A010965 A221144
KEYWORD
nonn,easy
STATUS
approved