OFFSET
-1,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. C. Greubel, Table of n, a(n) for n = -1..1000
I. Chen and N. Yui, Singular values of Thompson series. In Groups, difference sets and the Monster (Columbus, OH, 1993), pp. 255-326, Ohio State University Mathematics Research Institute Publications, 4, de Gruyter, Berlin, 1996.
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
FORMULA
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (2^(3/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 26 2018
EXAMPLE
T6B = 1/q + 78*q + 364*q^2 + 1365*q^3 + 4380*q^4 + 12520*q^5 + 32772*q^6 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q*(-12 + (eta[q^2]*eta[q^3]/(eta[q]*eta[q^6]))^12), {q, 0, 60}], q];
Table[A007255[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 12 2018 *)
PROG
(PARI) q='q+O('q^30); A=-12+(eta(q^2)*eta(q^3)/(eta(q)*eta(q^6)))^12/q; Vec(A) \\ G. C. Greubel, Jun 12 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved