[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007253
McKay-Thompson series of class 5a for Monster.
(Formerly M4131)
2
1, 0, -6, 20, 15, 36, 0, -84, 195, 100, 240, 0, -461, 1020, 540, 1144, 0, -1980, 4170, 2040, 4275, 0, -6984, 14340, 6940, 14076, 0, -21936, 44025, 20760, 41476, 0, -62484, 123620, 57630, 113244, 0, -166056, 324120, 148900, 289578, 0
OFFSET
-1,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. C. Greubel, Table of n, a(n) for n = -1..1000 (terms -1..100 from G. A. Edgar)
Sara Billey and Matjaž Konvalinka, Generalized rank functions and quilts of alternating sign matrices, arXiv:2412.03236 [math.CO], 2024. See p. 8.
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
John McKay and Hubertus Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
FORMULA
G.f.: T5a(q) satisfies functional equation P5(T5a(q)) = j(q^5) - 744, where we used modular function j(q) from A000521 and polynomial P5(t) = t^5+30*t^3-100*t^2+105*t-780. - G. A. Edgar, Mar 10 2017
G.f. is a period 1 Fourier series which satisfies f(-1 / (25 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Jan 23 2023
G.f.: A(q) satisfies functional equation P(A(q)) = j(q^5), where P(x) = (x-1)^3 * (x^2 + 3*x + 36) and j is Klein's modular function. - Michael Somos, Jan 23 2023
EXAMPLE
T5a = 1/q - 6*q + 20*q^2 + 15*q^3 + 36*q^4 - 84*q^6 + 195*q^7 + 100*q^8 + ...
MAPLE
with(numtheory): TOP := 23;
Order:=101;
g2 := (4/3) * (1 + 240 * add(sigma[ 3 ](n)*q^n, n=1..TOP-1));
g3 := (8/27) * (1 - 504 * add(sigma[ 5 ](n)*q^n, n=1..TOP-1));
delta := series(g2^3 - 27*g3^2, q=0, TOP);
j := series(1728 * g2^3 / delta, q=0, TOP);
# computation above of j is from A000521
P5 := t^5 + 30*t^3 - 100*t^2 + 105*t - 780;
subs(t = q^(-1) + x, P5) - subs(q=q^5, j - 744);
solve(%, x);
T5a := series(q^(-1)+%, q=0) assuming q > 0;
# G. A. Edgar, Mar 10 2017
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; e5B:= (eta[q]/eta[q^5])^6; e25a:= (eta[q]/eta[q^25]); a[n_]:= SeriesCoefficient[(1 + 5/e25a)*(1 + e5B) + 5*(e25a - 5/e25a)*(e5B/(e25a)^3), {q, 0, n}]; Table[a[n], {n, -1, 50}] (* G. C. Greubel, Jan 25 2018 *)
PROG
(PARI) q='q+O('q^30); F=(1 + 5*q*eta(q^25)/eta(q))*(1 + (eta(q)/eta(q^5) )^6/q) + 5*(eta(q)/(q*eta(q^25)) - 5*q*eta(q^25)/eta(q))*(q^2* eta(q^25)^3 *eta(q)^3/eta(q^5)^6); Vec(F) \\ G. C. Greubel, Jun 12 2018
CROSSREFS
Cf. A000521.
Sequence in context: A087998 A096823 A321328 * A096897 A063601 A222604
KEYWORD
sign,changed
EXTENSIONS
More terms from G. A. Edgar, Mar 10 2017
STATUS
approved