[go: up one dir, main page]

login
A004107
Number of self-dual nets with 2n nodes.
(Formerly M4663)
4
1, 1, 9, 165, 24651, 29522961, 286646256675, 21717897090413481, 12980536689318626076840, 62082697145168772833294318409, 2405195296608025717214293025492960466, 762399078635131851885116768114137369439908725
OFFSET
0,3
COMMENTS
A net in this context is a graph with both signed vertices and signed edges. A net is self-dual if changing the signs on all edges and vertices leaves the graph unchanged up to isomorphism. - Andrew Howroyd, Sep 25 2018
REFERENCES
F. Harary and R. W. Robinson, Exposition of the enumeration of point-line-signed graphs, pp. 19 - 33 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp.
R. W. Robinson, personal communication.
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..40 (terms 1..13 from R. W. Robinson)
Frank Harary, Edgar M. Palmer, Robert W. Robinson, and Allen J. Schwenk, Enumeration of graphs with signed points and lines, J. Graph Theory 1 (1977), no. 4, 295-308.
MATHEMATICA
permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := 2 Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i - 1}], {i, 2, Length[v]}] + Sum[2 Quotient[v[[i]], 2], {i, 1, Length[v]}];
a[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p], {p, IntegerPartitions[n]}]; s/n!];
Array[a, 12, 0] (* Jean-François Alcover, Aug 17 2019, after Andrew Howroyd *)
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {2*sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2*2)}
a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Sep 25 2018
(Python)
from itertools import combinations
from math import prod, gcd, factorial
from fractions import Fraction
from sympy.utilities.iterables import partitions
def A004107(n): return int(sum(Fraction(3**((sum(p[r]*p[s]*gcd(r, s) for r, s in combinations(p.keys(), 2))<<1)+sum(((q&-2)+q*(r-1))*r for q, r in p.items())), prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 09 2024
CROSSREFS
KEYWORD
nonn
EXTENSIONS
a(0)=1 prepended by Andrew Howroyd, Sep 25 2018
STATUS
approved