[go: up one dir, main page]

login
A361094
E.g.f. satisfies A(x) = exp( 1/(1 - x * A(x)^3) - 1 ).
8
1, 1, 9, 166, 4717, 182136, 8911549, 528571408, 36864033945, 2956595372416, 268116203622961, 27128338649300736, 3029974270053623941, 370289278173654092800, 49150116757136815109733, 7041536364582774222616576, 1083004122024520209576760369
OFFSET
0,3
LINKS
FORMULA
a(n) = n! * Sum_{k=0..n} (3*n+1)^(k-1) * binomial(n-1,n-k)/k!.
a(n) ~ (5 + sqrt(21))^n * n^(n-1) / (3^(3/4) * 7^(1/4) * 2^n * exp((3 - sqrt(21))/6 + (5 - sqrt(21))*n/2)). - Vaclav Kotesovec, Mar 02 2023
MATHEMATICA
Table[n! * Sum[(3*n+1)^(k-1) * Binomial[n-1, n-k]/k!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 02 2023 *)
PROG
(PARI) a(n) = n!*sum(k=0, n, (3*n+1)^(k-1)*binomial(n-1, n-k)/k!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 01 2023
STATUS
approved