Non-linear relation between industrial production and business surveys data
Author
Suggested Citation
Download full text from publisher
Other versions of this item:
- Giancarlo Bruno, 2009. "Non-linear relation between industrial production and business surveys data," ISAE Working Papers 119, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
References listed on IDEAS
- Simpson, Paul W & Osborn, Denise R & Sensier, Marianne, 2001.
"Forecasting UK Industrial Production over the Business Cycle,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(6), pages 405-424, September.
- Denise R. Osborn & Paul W. Simpson, 2000. "Forecasting UK Industrial Production Over the Business Cycle," Econometric Society World Congress 2000 Contributed Papers 1059, Econometric Society.
- M. B. Priestley, 1980. "State‐Dependent Models: A General Approach To Non‐Linear Time Series Analysis," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 47-71, January.
- Giancarlo Bruno & Claudio Lupi, 2004.
"Forecasting industrial production and the early detection of turning points,"
Empirical Economics, Springer, vol. 29(3), pages 647-671, September.
- Bruno Giancarlo & Lupi Claudio, 2001. "Forecasting Industrial Production and the Early Detection of Turning POints," ISAE Working Papers 20, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
- Bruno, Giancarlo & Lupi, Claudio, 2003. "Forecasting Industrial Production and the Early Detection of Turning Points," Economics & Statistics Discussion Papers esdp03004, University of Molise, Department of Economics.
- Giancarlo Bruno & Claudio Lupi, 2001. "Forecasting Industrial Production and the Early Detection of Turning Points," Econometrics 0110004, University Library of Munich, Germany.
- Tommaso Proietti & Cecilia Frale, 2011.
"New proposals for the quantification of qualitative survey data,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(4), pages 393-408, July.
- Tommaso Proietti & Cecilia Frale, 2007. "New proposals for the quantification of qualitative survey data," CEIS Research Paper 98, Tor Vergata University, CEIS.
- Jianqing Fan & Wenyang Zhang, 2000. "Simultaneous Confidence Bands and Hypothesis Testing in Varying‐coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 715-731, December.
- Carlos Robalo Marques, 2005.
"Inflation persistence: facts or artefacts?,"
Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
- Robalo Marques, Carlos, 2004. "Inflation persistence: facts or artefacts?," Working Paper Series 371, European Central Bank.
- Carlos Robalo Marques, 2004. "Inflation Persistence: Facts or Artefacts?," Working Papers w200408, Banco de Portugal, Economics and Research Department.
- Ioannis A. Venetis & David A. Peel & Ivan Paya, 2004.
"Asymmetry in the link between the yield spread and industrial production: threshold effects and forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(5), pages 373-384.
- Ivan Paya & David A. Peel & Ioannis A. Venetis, 2004. "Asymmetry In The Link Between The Yield Spread And Industrial Production. Threshold Effects And Forecasting," Working Papers. Serie AD 2004-41, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
- Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
- Franses, Philip Hans & van Dijk, Dick, 2005.
"The forecasting performance of various models for seasonality and nonlinearity for quarterly industrial production,"
International Journal of Forecasting, Elsevier, vol. 21(1), pages 87-102.
- Franses, Ph.H.B.F. & van Dijk, D.J.C., 2001. "The forecasting performance of various models for seasonality and nonlinearity for quarterly industrial production," Econometric Institute Research Papers EI 2001-14, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Garcia-Ferrer, Antonio & Bujosa-Brun, Marcos, 2000. "Forecasting OECD industrial turning points using unobserved components models with business survey data," International Journal of Forecasting, Elsevier, vol. 16(2), pages 207-227.
- D R Osborn & A Matas-Mir, 2003. "The Extent of Seasonal/Business Cycle Interactions in European Industrial Production," Centre for Growth and Business Cycle Research Discussion Paper Series 38, Economics, The University of Manchester.
- Chan Guk Huh, 1998. "Forecasting industrial production using models with business cycle asymmetry," Economic Review, Federal Reserve Bank of San Francisco, pages 29-41.
- Harvill, Jane L. & Ray, Bonnie K., 2005. "A note on multi-step forecasting with functional coefficient autoregressive models," International Journal of Forecasting, Elsevier, vol. 21(4), pages 717-727.
- Siliverstovs, B. & van Dijk, D.J.C., 2003. "Forecasting industrial production with linear, nonlinear, and structural change models," Econometric Institute Research Papers EI 2003-16, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Öcal Nadir, 2000. "Nonlinear Models for U.K. Macroeconomic Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 4(3), pages 1-15, October.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Jagric Timotej, 2003. "A Nonlinear Approach to Forecasting with Leading Economic Indicators," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 7(2), pages 1-20, July.
- Timo Teräsvirta & Chien‐Fu Lin & Clive W. J. Granger, 1993. "Power Of The Neural Network Linearity Test," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(2), pages 209-220, March.
- Bradley, Michael D. & Jansen, Dennis W., 2004. "Forecasting with a nonlinear dynamic model of stock returns and industrial production," International Journal of Forecasting, Elsevier, vol. 20(2), pages 321-342.
- Timotej Jagric, 2003. "Forecasting with leading economic indicators - a non-linear approach," Prague Economic Papers, Prague University of Economics and Business, vol. 2003(1), pages 68-83.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Maria Rita Ippoliti & Fabiana Sartor & Luigi Martone, 2021. "Trade surveys: qualitative and quantitative indicators," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 75(4), pages 75-85, October-D.
- G. Bruno & L. Crosilla & P. Margani, 2019. "Inspecting the Relationship Between Business Confidence and Industrial Production: Evidence on Italian Survey Data," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 15(1), pages 1-24, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bruno, Giancarlo & Lupi, Claudio, 2003.
"Forecasting Euro-Area Industrial Production Using (Mostly) Business Surveys Data,"
MPRA Paper
42332, University Library of Munich, Germany.
- Bruno Giancarlo & Lupi Claudio, 2003. "Forecasting Euro-Area Industrial Production Using (Mostly) Business Surveys Data," ISAE Working Papers 33, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
- Galdi, Giulio & Casarin, Roberto & Ferrari, Davide & Fezzi, Carlo & Ravazzolo, Francesco, 2023.
"Nowcasting industrial production using linear and non-linear models of electricity demand,"
Energy Economics, Elsevier, vol. 126(C).
- Giulio Galdi & Roberto Casarin & Davide Ferrari & Carlo Fezzi & Francesco Ravazzolo, 2022. "Nowcasting industrial production using linear and non-linear models of electricity demand," DEM Working Papers 2022/2, Department of Economics and Management.
- Terasvirta, Timo, 2006.
"Forecasting economic variables with nonlinear models,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457,
Elsevier.
- Teräsvirta, Timo, 2005. "Forecasting economic variables with nonlinear models," SSE/EFI Working Paper Series in Economics and Finance 598, Stockholm School of Economics, revised 29 Dec 2005.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Rapach, David E. & Wohar, Mark E., 2006. "The out-of-sample forecasting performance of nonlinear models of real exchange rate behavior," International Journal of Forecasting, Elsevier, vol. 22(2), pages 341-361.
- Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004.
"Forecasting economic and financial time-series with non-linear models,"
International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
- Michael P. Clements & Philip Hans Franses & Norman R. Swanson, 2003. "Forecasting economic and financial time-series with non-linear models," Departmental Working Papers 200309, Rutgers University, Department of Economics.
- Terasvirta, Timo & van Dijk, Dick & Medeiros, Marcelo C., 2005.
"Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination,"
International Journal of Forecasting, Elsevier, vol. 21(4), pages 755-774.
- Teräsvirta, Timo & van Dijk, Dick & Medeiros, Marcelo, 2004. "Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination," SSE/EFI Working Paper Series in Economics and Finance 561, Stockholm School of Economics, revised 09 Nov 2004.
- Timo Teräsvirta & Dick van Dijk & Marcelo Cunha Medeiros, 2004. "Linear models, smooth transition autoregressions and neural networks for forecasting macroeconomic time series: A reexamination," Textos para discussão 485, Department of Economics PUC-Rio (Brazil).
- Greg Tkacz & Carolyn Wilkins, 2008. "Linear and threshold forecasts of output and inflation using stock and housing prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 131-151.
- Giancarlo Bruno, 2014.
"Consumer confidence and consumption forecast: a non-parametric approach,"
Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 41(1), pages 37-52, February.
- Bruno, Giancarlo, 2012. "Consumer confidence and consumption forecast: a non-parametric approach," MPRA Paper 41312, University Library of Munich, Germany.
- Carmine Pappalardo & Gianfranco Piras, 2004. "Vector-Autoregression Approach to Forecast Italian Imports," ISAE Working Papers 42, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
- Jan G. De Gooijer & Rob J. Hyndman, 2005.
"25 Years of IIF Time Series Forecasting: A Selective Review,"
Monash Econometrics and Business Statistics Working Papers
12/05, Monash University, Department of Econometrics and Business Statistics.
- Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
- Costantini, Mauro & Pappalardo, Carmine, 2010. "A hierarchical procedure for the combination of forecasts," International Journal of Forecasting, Elsevier, vol. 26(4), pages 725-743, October.
- Bruno, Giancarlo, 2008.
"Forecasting Using Functional Coefficients Autoregressive Models,"
MPRA Paper
42335, University Library of Munich, Germany.
- Giancarlo Bruno, 2008. "Forecasting Using Functional Coefficients Autoregressive Models," ISAE Working Papers 98, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
- Dandan Liu, 2011. "Learning and Estimation of the New Keynesian Phillips Curve Models," Southern Economic Journal, John Wiley & Sons, vol. 78(2), pages 382-396, October.
- Maurício Yoshinori Une & Marcelo Savino Portugal, 2005. "Can fear beat hope? A story of GARCH-in-Mean-Level effects for Emerging Market Country Risks," Econometrics 0509006, University Library of Munich, Germany.
- Siliverstovs, B. & van Dijk, D.J.C., 2003. "Forecasting industrial production with linear, nonlinear, and structural change models," Econometric Institute Research Papers EI 2003-16, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Houda Ben Hadj Boubaker, 2011. "The Forecasting Performance of Seasonal and Nonlinear Models," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 1(1), pages 26-39, March.
- Bentes, Sonia R. & Menezes, Rui, 2013. "On the predictability of realized volatility using feasible GLS," Journal of Asian Economics, Elsevier, vol. 28(C), pages 58-66.
- Mohamed CHIKHI & Claude DIEBOLT, 2022.
"Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation,"
Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 228-253, June.
- Mohamed CHIKHI & Claude DIEBOLT, 2021. "Testing The Weak Form Efficiency Of The French Etf Market With Lstar-Anlstgarch Approach Using A Semiparametric Estimation," Working Papers of BETA 2021-36, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
- Mohamed Chikhi & Claude Diebolt, 2022. "Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation," Post-Print hal-03778331, HAL.
- Claude Diebolt & Mohamed Chikhi, 2021. "Testing The Weak Form Efficiency Of The French Etf Market With Lstar-Anlstgarch Approach Using A Semiparametric Estimation," Working Papers 09-21, Association Française de Cliométrie (AFC).
- Goodness C. Aye & Stephen M. Miller & Rangan Gupta & Mehmet Balcilar, 2016.
"Forecasting US real private residential fixed investment using a large number of predictors,"
Empirical Economics, Springer, vol. 51(4), pages 1557-1580, December.
- Goodness C. Aye & Stephen M. Miller & Rangan Gupta & Mehmet Balcilar, 2013. "Forecasting the US Real Private Residential Fixed Investment Using Large Number of Predictors," Working Papers 201348, University of Pretoria, Department of Economics.
- Goodness C. Aye & Rangan Gupta & Stephen M. Miller & Mehmet Balcilar, 2014. "Forecasting US Real Private Residential Fixed Investment Using a Large Number of Predictors," Working papers 2014-10, University of Connecticut, Department of Economics.
More about this item
Keywords
Forecasting; Business Surveys; Non-linear time-series models; Non-parametric models;All these keywords.
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:42337. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.