[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/42335.html
   My bibliography  Save this paper

Forecasting Using Functional Coefficients Autoregressive Models

Author

Listed:
  • Bruno, Giancarlo
Abstract
The use of linear parametric models for forecasting economic time series is widespread among practitioners, in spite of the fact that there is a large evidence of the presence of non-linearities in many of such time series. However, the empirical results stemming from the use of non-linear models are not always as good as expected. This has been sometimes associated to the difficulty in correctly specifying a non-linear parametric model. I this paper I cope with this issue by using a more general non-parametric approach, which can be used both as a preliminary tool for aiding in specifying a suitable parametric model and as an autonomous modelling strategy. The results are promising, in that the non-parametric approach achieve a good forecasting record for a considerable number of series.

Suggested Citation

  • Bruno, Giancarlo, 2008. "Forecasting Using Functional Coefficients Autoregressive Models," MPRA Paper 42335, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:42335
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/42335/1/MPRA_paper_42335.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jianqing Fan & Qiwei Yao & Zongwu Cai, 2003. "Adaptive varying‐coefficient linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 57-80, February.
    2. Terasvirta, Timo & van Dijk, Dick & Medeiros, Marcelo C., 2005. "Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination," International Journal of Forecasting, Elsevier, vol. 21(4), pages 755-774.
    3. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    4. Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
    5. Rong Chen & Lon‐Mu Liu, 2001. "Functional Coefficient Autoregressive Models: Estimation and Tests of Hypotheses," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(2), pages 151-173, March.
    6. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    7. Harvill, Jane L. & Ray, Bonnie K., 2005. "A note on multi-step forecasting with functional coefficient autoregressive models," International Journal of Forecasting, Elsevier, vol. 21(4), pages 717-727.
    8. Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993. "Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests," Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
    9. Timo Teräsvirta & Chien‐Fu Lin & Clive W. J. Granger, 1993. "Power Of The Neural Network Linearity Test," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(2), pages 209-220, March.
    10. Melvin J. Hinich, 1982. "Testing For Gaussianity And Linearity Of A Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(3), pages 169-176, May.
    11. Rolf Tschernig & Lijian Yang, 2000. "Nonparametric Lag Selection for Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(4), pages 457-487, July.
    12. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giancarlo Bruno, 2014. "Consumer confidence and consumption forecast: a non-parametric approach," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 41(1), pages 37-52, February.
    2. Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.
    3. Timo Teräsvirta & Marcelo C. Medeiros & Gianluigi Rech, 2006. "Building neural network models for time series: a statistical approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(1), pages 49-75.
    4. Adrian Pagan & Hashem Pesaran, 2007. "Econometric Analysis of Structural Systems with Permanent and Transitory Shocks. Working paper #7," NCER Working Paper Series 7, National Centre for Econometric Research.
    5. Stan Hurn & Ralf Becker, 2009. "Testing for Nonlinearity in Mean in the Presence of Heteroskedasticity," Economic Analysis and Policy, Elsevier, vol. 39(2), pages 311-326, September.
    6. Shintani, Mototsugu, 2008. "A dynamic factor approach to nonlinear stability analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 32(9), pages 2788-2808, September.
    7. Patrick, Joshua D. & Harvill, Jane L. & Hansen, Clifford W., 2016. "A semiparametric spatio-temporal model for solar irradiance data," Renewable Energy, Elsevier, vol. 87(P1), pages 15-30.
    8. Harvill, Jane L. & Ray, Bonnie K., 2006. "Functional coefficient autoregressive models for vector time series," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3547-3566, August.
    9. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    10. Giancarlo Bruno, 2009. "Non-linear relation between industrial production and business surveys data," ISAE Working Papers 119, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
    11. Peter Exterkate, 2012. "Model Selection in Kernel Ridge Regression," CREATES Research Papers 2012-10, Department of Economics and Business Economics, Aarhus University.
    12. Fabio Gobbi, 2021. "Evaluating Forecasts from State-Dependent Autoregressive Models for US GDP Growth Rate. Comparison with Alternative Approaches," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 11(6), pages 1-7.
    13. Anders Bredahl Kock & Timo Teräsvirta, 2016. "Forecasting Macroeconomic Variables Using Neural Network Models and Three Automated Model Selection Techniques," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1753-1779, December.
    14. Man Wang & Kun Chen & Qin Luo & Chao Cheng, 2018. "Multi-Step Inflation Prediction with Functional Coefficient Autoregressive Model," Sustainability, MDPI, vol. 10(6), pages 1-16, May.
    15. de Lima, Pedro J. F., 1997. "On the robustness of nonlinearity tests to moment condition failure," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 251-280.
    16. Wong, Heung & Ip, Wai-cheung & Zhang, Riquan, 2008. "Varying-coefficient single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1458-1476, January.
    17. Chen, Gong & Fricke, Hartmut & Okhrin, Ostap & Rosenow, Judith, 2024. "Flight delay propagation inference in air transport networks using the multilayer perceptron," Journal of Air Transport Management, Elsevier, vol. 114(C).
    18. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    19. Heather L. R. Tierney, 2019. "Forecasting with the Nonparametric Exclusion-from-Core Inflation Persistence Model Using Real-Time Data," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 25(1), pages 39-63, February.
    20. Vito Polito & Yunyi Zhang, 2021. "Tackling Large Outliers in Macroeconomic Data with Vector Artificial Neural Network Autoregression," CESifo Working Paper Series 9395, CESifo.

    More about this item

    Keywords

    Non-linear time-series models; non-parametric models;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:42335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.