[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/10674.html
   My bibliography  Save this paper

An algorithm using GARCH process , Monte-Carlo simulation and wavelets analysis for stock prediction

Author

Listed:
  • Giovanis, Eleftherios
Abstract
This paper examines and presents a simple algorithm for prediction stock written in MATLAB code. We apply it to thirty stocks of the Athens exchange stock market . We obtain the stock returns and we would like to predict, not the actual price , but the sign of stock returns. The results are very satisfying while we predict the right sign for 25 out of 30 cases or else we have a success of 83.33%. The problem with the algorithm is that we don’t have the ability to predict zero returns.

Suggested Citation

  • Giovanis, Eleftherios, 2008. "An algorithm using GARCH process , Monte-Carlo simulation and wavelets analysis for stock prediction," MPRA Paper 10674, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:10674
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/10674/1/MPRA_paper_10674.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    2. Leung, Mark T. & Daouk, Hazem & Chen, An-Sing, 2000. "Forecasting stock indices: a comparison of classification and level estimation models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 173-190.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moysiadis, Theodoros & Fokianos, Konstantinos, 2014. "On binary and categorical time series models with feedback," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 209-228.
    2. Ginker, Tim & Lieberman, Offer, 2017. "Robustness of binary choice models to conditional heteroscedasticity," Economics Letters, Elsevier, vol. 150(C), pages 130-134.
    3. Md. Zahangir Alam & Md. Noman Siddikee & Md. Masukujjaman, 2013. "Forecasting Volatility of Stock Indices with ARCH Model," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 4(2), pages 126-143, April.
    4. Leonard Mushunje & Maxwell Mashasha & Edina Chandiwana, 2023. "Short-term Volatility Estimation for High Frequency Trades using Gaussian processes (GPs)," Papers 2311.10935, arXiv.org.
    5. Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2023. "A Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1801-1843, December.
    6. Chin-Shien Lin & Haider Ali Khan & Chi-Chung Huang, 2002. "Can the neuro fuzzy model predict stock indexes better than its rivals?," CIRJE F-Series CIRJE-F-165, CIRJE, Faculty of Economics, University of Tokyo.
    7. Rasika Yatigammana & Shelton Peiris & Richard Gerlach & David Edmund Allen, 2018. "Modelling and Forecasting Stock Price Movements with Serially Dependent Determinants," Risks, MDPI, vol. 6(2), pages 1-22, May.
    8. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    9. Beran, Jan & Feng, Yuanhua, 1999. "Local Polynomial Estimation with a FARIMA-GARCH Error Process," CoFE Discussion Papers 99/08, University of Konstanz, Center of Finance and Econometrics (CoFE).
    10. Corbet, Shaen & Larkin, Charles & McMullan, Caroline, 2020. "The impact of industrial incidents on stock market volatility," Research in International Business and Finance, Elsevier, vol. 52(C).
    11. Minot, Nicholas, 2014. "Food price volatility in sub-Saharan Africa: Has it really increased?," Food Policy, Elsevier, vol. 45(C), pages 45-56.
    12. Lahmiri, Salim & Bekiros, Stelios, 2017. "Disturbances and complexity in volatility time series," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 38-42.
    13. Tomanova, Lucie, 2013. "Exchange Rate Volatility and the Foreign Trade in CEEC," EY International Congress on Economics I (EYC2013), October 24-25, 2013, Ankara, Turkey 267, Ekonomik Yaklasim Association.
    14. Chang, Chia-Lin, 2015. "Modelling a latent daily Tourism Financial Conditions Index," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 113-126.
    15. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    16. ?ikolaos A. Kyriazis, 2021. "Impacts of Stock Indices, Oil, and Twitter Sentiment on Major Cryptocurrencies during the COVID-19 First Wave," Bulletin of Applied Economics, Risk Market Journals, vol. 8(2), pages 133-146.
    17. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    18. Bentes, Sonia R. & Menezes, Rui, 2013. "On the predictability of realized volatility using feasible GLS," Journal of Asian Economics, Elsevier, vol. 28(C), pages 58-66.
    19. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    20. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.

    More about this item

    Keywords

    GARCH˙ wavelets˙ forecasting˙ Monte-Carlo˙ wavelet discrete transformation;

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:10674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.