[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/jfr/ijfr11/v4y2013i2p126-143.html
   My bibliography  Save this article

Forecasting Volatility of Stock Indices with ARCH Model

Author

Listed:
  • Md. Zahangir Alam
  • Md. Noman Siddikee
  • Md. Masukujjaman
Abstract
The main motive of this study is to investigate the use of ARCH model for forecasting volatility of the DSE20 and DSE general indices by using the daily data. GARCH, EGARCH, PARCH, and TARCH models are used as benchmark models for the study purpose. This study covers from December 1, 2001 to August 14, 2008 and from August 18, 2008 to September 10, 2011 as in-sample and out-of-sample set sets respectively. The study finds the past volatility of both the DSE20 and DSE general indices returns series are significantly, influenced current volatility. Based on in-sample statistical performance, both the ARCH and PARCH models are considered as the best performing model jointly for DSE20 index returns, whereas for DSE general index returns series, ARCH model outperforms other models. According to the out ¨C of- sample statistical performance, all models except GARCH and TARCH models are regarded as the best model jointly for DSE20 index returns series, while for DSE general index returns series, no model is nominated as the best model individually. Based on the in-sample trading performance, all models except GARCH are considered as the best model jointly for DSE20 index returns series, while ARCH model is selected as the best model for DSE general index returns series. A per outputs of out-of-sample trading performance, the EGARCH model is the best performing model for DSE20 index returns series, whereas the GARCH and ARCH models are considered as the best performing model jointly for DSE general index returns series.

Suggested Citation

  • Md. Zahangir Alam & Md. Noman Siddikee & Md. Masukujjaman, 2013. "Forecasting Volatility of Stock Indices with ARCH Model," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 4(2), pages 126-143, April.
  • Handle: RePEc:jfr:ijfr11:v:4:y:2013:i:2:p:126-143
    as

    Download full text from publisher

    File URL: http://www.sciedu.ca/journal/index.php/ijfr/article/view/2661/1516
    Download Restriction: no

    File URL: http://www.sciedu.ca/journal/index.php/ijfr/article/view/2661
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David McMillan & Alan Speight & Owain Apgwilym, 2000. "Forecasting UK stock market volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 10(4), pages 435-448.
    2. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    3. Iulian PANAIT & Ecaterina Oana SLĂVESCU, 2012. "Using Garch-in-Mean Model to Investigate Volatility and Persistence at Different Frequencies for Bucharest Stock Exchange during 1997-2012," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(5(570)), pages 55-76, May.
    4. Phaisarn Sutheebanjard & Wichian Premchaiswadi, 2010. "Forecasting the Thailand Stock Market Using Evolution Strategies," Asian Academy of Management Journal of Accounting and Finance (AAMJAF), Penerbit Universiti Sains Malaysia, vol. 6(2), pages 85-114.
    5. Christian L. Dunis & Jason Laws & Andreas Karathanassopoulos, 2011. "Modelling and trading the Greek stock market with mixed neural network models," Applied Financial Economics, Taylor & Francis Journals, vol. 21(23), pages 1793-1808, December.
    6. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Leung, Mark T. & Daouk, Hazem & Chen, An-Sing, 2000. "Forecasting stock indices: a comparison of classification and level estimation models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 173-190.
    9. Louis H. Ederington & Wei Guan, 2005. "Forecasting volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(5), pages 465-490, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeda Xu & John Liechty & Sebastian Benthall & Nicholas Skar-Gislinge & Christopher McComb, 2024. "GARCH-Informed Neural Networks for Volatility Prediction in Financial Markets," Papers 2410.00288, arXiv.org.
    2. Fatima Syed & Naimat U. Khan, 2017. "Islamic Calendar Anomalies: Evidence from Pakistan," Business & Economic Review, Institute of Management Sciences, Peshawar, Pakistan, vol. 9(3), pages 104-122, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prateek Sharma & Vipul _, 2015. "Forecasting stock index volatility with GARCH models: international evidence," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(4), pages 445-463, October.
    2. Jorge Caiado, 2004. "Modelling And Forecasting The Volatility Of The Portuguese Stock Index Psi-20," Portuguese Journal of Management Studies, ISEG, Universidade de Lisboa, vol. 9(1), pages 3-21.
    3. E.B. Nkemnole & J.T. Wulu, 2017. "Modeling of stock indices with HMM-SV models," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(2(611), S), pages 45-60, Summer.
    4. Muhammad Sheraz & Imran Nasir, 2021. "Information-Theoretic Measures and Modeling Stock Market Volatility: A Comparative Approach," Risks, MDPI, vol. 9(5), pages 1-20, May.
    5. Raúl de Jesús Gutiérrez & Edgar Ortiz & Oswaldo García Salgado, 2017. "Los efectos de largo plazo de la asimetría y persistencia en la predicción de la volatilidad: evidencia para mercados accionarios de América Latina," Contaduría y Administración, Accounting and Management, vol. 62(4), pages 1063-1080, Octubre-D.
    6. Alan E. H. Speight & David G. McMillan, 2004. "Daily volatility forecasts: reassessing the performance of GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 449-460.
    7. Dima Alberg & Haim Shalit & Rami Yosef, 2008. "Estimating stock market volatility using asymmetric GARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 18(15), pages 1201-1208.
    8. Naseem Al Rahahleh & Robert Kao, 2018. "Forecasting Volatility: Evidence from the Saudi Stock Market," JRFM, MDPI, vol. 11(4), pages 1-18, November.
    9. Kambouroudis, Dimos S. & McMillan, David G., 2015. "Is there an ideal in-sample length for forecasting volatility?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 37(C), pages 114-137.
    10. Roni Bhowmik & Wu Chao & Jewel Roy Kumar & Wang Shouyang, 2017. "A Study on the Volatility of the Bangladesh Stock Market — Based on GARCH Type Models," Journal of Systems Science and Information, De Gruyter, vol. 5(3), pages 193-215, June.
    11. Pedro Correia S. Bezerra & Pedro Henrique M. Albuquerque, 2017. "Volatility forecasting via SVR–GARCH with mixture of Gaussian kernels," Computational Management Science, Springer, vol. 14(2), pages 179-196, April.
    12. Zabiulla, 2015. "Volatility Clustering and Leverage Effect in the Indian Forex Market," Global Business Review, International Management Institute, vol. 16(5), pages 785-799, October.
    13. Milton Abdul Thorlie & Lixin Song & Muhammad Amin & Xiaoguang Wang, 2015. "Modeling and forecasting of stock index volatility with APARCH models under ordered restriction," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(3), pages 329-356, August.
    14. Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
    15. Hossain, Md. Jamal & Akter, Sadia & Ismail, Mohd Tahir, 2021. "Performance Analysis of GARCH Family Models in Three Time-frames," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 55(2), pages 15-28.
    16. Umar, Muhammad & Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Furqan, Mehreen, 2023. "Asymmetric volatility structure of equity returns: Evidence from an emerging market," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 330-336.
    17. Chang, Chia-Lin & Hsu, Hui-Kuang, 2013. "Modelling Volatility Size Effects for Firm Performance: The Impact of Chinese Tourists to Taiwan," MPRA Paper 45691, University Library of Munich, Germany.
    18. repec:wyi:journl:002087 is not listed on IDEAS
    19. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    20. Alex Huang, 2013. "Value at risk estimation by quantile regression and kernel estimator," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 225-251, August.
    21. Chia-Lin Chang & Shu-Han Hsu & Michael McAleer, 2018. "An Event Study Analysis of Political Events, Disasters, and Accidents for Chinese Tourists to Taiwan," Sustainability, MDPI, vol. 10(11), pages 1-77, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jfr:ijfr11:v:4:y:2013:i:2:p:126-143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gina Perry (email available below). General contact details of provider: http://ijfr.sciedupress.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.