[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/nwu/cmsems/1258.html
   My bibliography  Save this paper

Stopping Games with Randomized Strategies

Author

Listed:
  • Dinah Rosenberg
  • Eilon Solan
  • Nicolas Vieille
Abstract
We study stopping games in the setup of Neveu. We prove the existence of a uniform value (in a sense defined below), by allowing the players to use randomized strategies. In contrast with previous work, we make no comparison assumption on the payoff processes. Moreover, we prove that the value is the limit of discounted values, and we construct e-optimal strategies.

Suggested Citation

  • Dinah Rosenberg & Eilon Solan & Nicolas Vieille, 1999. "Stopping Games with Randomized Strategies," Discussion Papers 1258, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  • Handle: RePEc:nwu:cmsems:1258
    as

    Download full text from publisher

    File URL: http://www.kellogg.northwestern.edu/research/math/papers/1258.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mertens, Jean-Francois, 2002. "Stochastic games," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 47, pages 1809-1832, Elsevier.
    2. Yasuda, M., 1985. "On a randomized strategy in Neveu's stopping problem," Stochastic Processes and their Applications, Elsevier, vol. 21(1), pages 159-166, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank H. Page & Myrna H. Wooders, 2009. "Endogenous Network Dynamics," Working Papers 2009.28, Fondazione Eni Enrico Mattei.
    2. Dinah Rosenberg & Eilon Solan & Nicolas Vieille, 2003. "The MaxMin value of stochastic games with imperfect monitoring," International Journal of Game Theory, Springer;Game Theory Society, vol. 32(1), pages 133-150, December.
    3. János Flesch & Gijs Schoenmakers & Koos Vrieze, 2009. "Stochastic games on a product state space: the periodic case," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(2), pages 263-289, June.
    4. Abraham Neyman & Sylvain Sorin, 2010. "Repeated games with public uncertain duration process," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(1), pages 29-52, March.
    5. Vieille, Nicolas, 2002. "Stochastic games: Recent results," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 48, pages 1833-1850, Elsevier.
    6. Anna Jaśkiewicz & Andrzej Nowak, 2011. "Stochastic Games with Unbounded Payoffs: Applications to Robust Control in Economics," Dynamic Games and Applications, Springer, vol. 1(2), pages 253-279, June.
    7. Abreu, Dilip & Manea, Mihai, 2012. "Markov equilibria in a model of bargaining in networks," Games and Economic Behavior, Elsevier, vol. 75(1), pages 1-16.
    8. Rida Laraki & A.P. Maitra & William Sudderth, 2005. "Two -person zero-sum stochastic games with semicontinuous payoff," Working Papers hal-00243014, HAL.
    9. Casilda Lasso de la Vega & Oscar Volij, 2020. "The value of a draw," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(4), pages 1023-1044, November.
    10. Abraham Neyman, 2002. "Stochastic games: Existence of the MinMax," Discussion Paper Series dp295, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    11. Laraki, Rida & Sorin, Sylvain, 2015. "Advances in Zero-Sum Dynamic Games," Handbook of Game Theory with Economic Applications,, Elsevier.
    12. VIEILLE, Nicolas & ROSENBERG, Dinah & SOLAN, Eilon, 2002. "Stochastic games with a single controller and incomplete information," HEC Research Papers Series 754, HEC Paris.
    13. Xavier Vives, 2009. "Strategic complementarity in multi-stage games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(1), pages 151-171, July.
    14. VIEILLE, Nicolas & ROSENBERG, Dinah & SOLAN, Eilon, 2002. "Approximating a sequence of observations by a simple process," HEC Research Papers Series 756, HEC Paris.
    15. Eilon Solan & Nicolas Vieille, 2010. "Computing uniformly optimal strategies in two-player stochastic games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 237-253, January.
    16. Guilherme Carmona, 2002. "Monetary trading: an optimal exchange system," Nova SBE Working Paper Series wp420, Universidade Nova de Lisboa, Nova School of Business and Economics.
    17. VIEILLE, Nicolas, 2001. "Two-player games : a reduction," HEC Research Papers Series 745, HEC Paris.
    18. Doraszelski, Ulrich & Satterthwaite, Mark, 2007. "Computable Markov-Perfect Industry Dynamics: Existence, Purification, and Multiplicity," CEPR Discussion Papers 6212, C.E.P.R. Discussion Papers.
    19. Abraham Neyman, 2012. "The value of two-person zero-sum repeated games with incomplete information and uncertain duration," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(1), pages 195-207, February.
    20. Ulrich Doraszelski & Mark Satterthwaite, 2007. "Computable Markov-Perfect Industry Dynamics: Existence, Purification, and Multiplicity," Levine's Bibliography 321307000000000912, UCLA Department of Economics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nwu:cmsems:1258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Fran Walker (email available below). General contact details of provider: https://edirc.repec.org/data/cmnwuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.