[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/16532.html
   My bibliography  Save this paper

Estimating Turning Points Using Large Data Sets

Author

Listed:
  • James H. Stock
  • Mark W. Watson
Abstract
Dating business cycles entails ascertaining economy-wide turning points. Broadly speaking, there are two approaches in the literature. The first approach, which dates to Burns and Mitchell (1946), is to identify turning points individually in a large number of series, then to look for a common date that could be called an aggregate turning point. The second approach, which has been the focus of more recent academic and applied work, is to look for turning points in a few, or just one, aggregate. This paper examines these two approaches to the identification of turning points. We provide a nonparametric definition of a turning point (an estimand) based on a population of time series. This leads to estimators of turning points, sampling distributions, and standard errors for turning points based on a sample of series. We consider both simple random sampling and stratified sampling. The empirical part of the analysis is based on a data set of 270 disaggregated monthly real economic time series for the U.S., 1959-2010.

Suggested Citation

  • James H. Stock & Mark W. Watson, 2010. "Estimating Turning Points Using Large Data Sets," NBER Working Papers 16532, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:16532
    Note: EFG ME
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w16532.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jeremy J. Nalewaik, 2010. "The Income- and Expenditure-Side Estimates of U.S. Output Growth," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 41(1 (Spring), pages 71-127.
    2. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    3. Harding, Don & Pagan, Adrian, 2006. "Synchronization of cycles," Journal of Econometrics, Elsevier, vol. 132(1), pages 59-79, May.
    4. Chauvet, Marcelle & Piger, Jeremy, 2008. "A Comparison of the Real-Time Performance of Business Cycle Dating Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 42-49, January.
    5. James H. Stock & Mark W. Watson, 2010. "Indicators for Dating Business Cycles: Cross-History Selection and Comparisons," American Economic Review, American Economic Association, vol. 100(2), pages 16-19, May.
    6. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    7. Hamilton, James D., 2011. "Calling recessions in real time," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1006-1026, October.
    8. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1.
    9. Gerhard Bry & Charlotte Boschan, 1971. "Foreword to "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs"," NBER Chapters, in: Cyclical Analysis of Time Series: Selected Procedures and Computer Programs, pages -1, National Bureau of Economic Research, Inc.
    10. Gerhard Bry & Charlotte Boschan, 1971. "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs," NBER Books, National Bureau of Economic Research, Inc, number bry_71-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eraslan, Sercan & Nöller, Marvin, 2020. "Recession probabilities falling from the STARs," Discussion Papers 08/2020, Deutsche Bundesbank.
    2. Nissilä, Wilma, 2020. "Probit based time series models in recession forecasting – A survey with an empirical illustration for Finland," BoF Economics Review 7/2020, Bank of Finland.
    3. Aastveit, Knut Are & Jore, Anne Sofie & Ravazzolo, Francesco, 2016. "Identification and real-time forecasting of Norwegian business cycles," International Journal of Forecasting, Elsevier, vol. 32(2), pages 283-292.
    4. Maximo Camacho & María Dolores Gadea & Ana Gómez Loscos, 2022. "A New Approach to Dating the Reference Cycle," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 66-81, January.
    5. Maximo Camacho & María Dolores Gadea & Ana Gómez-Loscos, 2021. "An Automatic Algorithm to Date the Reference Cycle of the Spanish Economy," Mathematics, MDPI, vol. 9(18), pages 1-17, September.
    6. Serena Ng, 2014. "Viewpoint: Boosting Recessions," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 47(1), pages 1-34, February.
    7. Marcelle Chauvet & Jeremy Piger, 2013. "Employment And The Business Cycle," Manchester School, University of Manchester, vol. 81, pages 16-42, October.
    8. Enrique A. López-Enciso, 2017. "Dos tradiciones en la medición del ciclo: historia general y desarrollos en Colombia," Borradores de Economia 986, Banco de la Republica de Colombia.
    9. Theobald, Thomas, 2013. "Markov Switching with Endogenous Number of Regimes and Leading Indicators in a Real-Time Business Cycle Forecast," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79911, Verein für Socialpolitik / German Economic Association.
    10. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2012. "Combination schemes for turning point predictions," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 402-412.
    11. Olivier Darné & Laurent Ferrara, 2011. "Identification of Slowdowns and Accelerations for the Euro Area Economy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(3), pages 335-364, June.
    12. Catherine Doz & Laurent Ferrara & Pierre-Alain Pionnier, 2020. "Business cycle dynamics after the Great Recession: An extended Markov-Switching Dynamic Factor Model," OECD Statistics Working Papers 2020/01, OECD Publishing.
    13. Li, Haixi & Sheng, Xuguang Simon & Yang, Jingyun, 2021. "Monitoring recessions: A Bayesian sequential quickest detection method," International Journal of Forecasting, Elsevier, vol. 37(2), pages 500-510.
    14. Duprey, Thibaut & Klaus, Benjamin & Peltonen, Tuomas, 2017. "Dating systemic financial stress episodes in the EU countries," Journal of Financial Stability, Elsevier, vol. 32(C), pages 30-56.
    15. Sergey V. Smirnov & Nikolay V. Kondrashov & Anna V. Petronevich, 2017. "Dating Cyclical Turning Points for Russia: Formal Methods and Informal Choices," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 13(1), pages 53-73, May.
    16. Chauvet, Marcelle & Piger, Jeremy, 2008. "A Comparison of the Real-Time Performance of Business Cycle Dating Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 42-49, January.
    17. Issler, Joao Victor & Notini, Hilton & Rodrigues, Claudia & Soares, Ana Flávia, 2013. "Constructing coincident indices of economic activity for the Latin American economy," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 67(1), April.
    18. Marie Adanero-Donderis & Olivier Darné & Laurent Ferrara, 2009. "Un indicateur probabiliste du cycle d’accélération pour l’économie française," Économie et Prévision, Programme National Persée, vol. 189(3), pages 95-114.
    19. repec:fgv:epgrbe:v:67:n:1:a:4 is not listed on IDEAS
    20. Golosnoy, Vasyl & Hogrefe, Jens, 2009. "Sequential methodology for signaling business cycle turning points," Kiel Working Papers 1528, Kiel Institute for the World Economy (IfW Kiel).
    21. Cem Çakmakli & Hamza Dem I˙rcani & Sumru Altug, 2021. "Modelling of Economic and Financial Conditions for Real‐Time Prediction of Recessions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(3), pages 663-685, June.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:16532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.