[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/kud/kuiedp/0824.html
   My bibliography  Save this paper

Decentralized Pricing in Minimum Cost Spanning Trees

Author

Listed:
  • Jens Leth Hougaard

    (Department of Food and Resource Economics, University of Copenhagen)

  • Hervé Moulin

    (Department of Economics, Rice University)

  • Lars Peter Østerdal

    (Department of Economics, University of Copenhagen)

Abstract
In the minimum cost spanning tree model we consider decentralized pricing rules, i.e. rules that cover at least the efficient cost while the price charged to each user only depends upon his own connection costs. We define a canonical pricing rule and provide two axiomatic characterizations. First, the canonical pricing rule is the smallest among those that improve upon the Stand Alone bound, and are either superadditive or piece-wise linear in connection costs. Our second, direct characterization relies on two simple properties highlighting the special role of the source cost.

Suggested Citation

  • Jens Leth Hougaard & Hervé Moulin & Lars Peter Østerdal, 2008. "Decentralized Pricing in Minimum Cost Spanning Trees," Discussion Papers 08-24, University of Copenhagen. Department of Economics.
  • Handle: RePEc:kud:kuiedp:0824
    as

    Download full text from publisher

    File URL: http://www.econ.ku.dk/english/research/publications/wp/2008/0824.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hervé Moulin & Scott Shenker, 2001. "Strategyproof sharing of submodular costs:budget balance versus efficiency," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 18(3), pages 511-533.
    2. Sharkey,William W., 1983. "The Theory of Natural Monopoly," Cambridge Books, Cambridge University Press, number 9780521271943, September.
    3. Norde, Henk & Moretti, Stefano & Tijs, Stef, 2004. "Minimum cost spanning tree games and population monotonic allocation schemes," European Journal of Operational Research, Elsevier, vol. 154(1), pages 84-97, April.
    4. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems," Other publications TiSEM 56ea8c64-a05f-4b3f-ab61-9, Tilburg University, School of Economics and Management.
    5. Bogomolnaia, Anna & Moulin, Herve, 2001. "A New Solution to the Random Assignment Problem," Journal of Economic Theory, Elsevier, vol. 100(2), pages 295-328, October.
    6. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems," Discussion Paper 1994-106, Tilburg University, Center for Economic Research.
    7. Moulin, Herve, 1992. "Welfare bounds in the cooperative production problem," Games and Economic Behavior, Elsevier, vol. 4(3), pages 373-401, July.
    8. Bogomolnaia, Anna & Moulin, Hervé, 2010. "Sharing a minimal cost spanning tree: Beyond the Folk solution," Games and Economic Behavior, Elsevier, vol. 69(2), pages 238-248, July.
    9. Moulin, Herve, 1990. "Uniform externalities : Two axioms for fair allocation," Journal of Public Economics, Elsevier, vol. 43(3), pages 305-326, December.
    10. Bergantinos, Gustavo & Vidal-Puga, Juan J., 2007. "A fair rule in minimum cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 326-352, November.
    11. Stefano Moretti & Rodica Branzei & Henk Norde & Stef Tijs, 2004. "The P-value for cost sharing in minimum," Theory and Decision, Springer, vol. 56(1), pages 47-61, April.
    12. Dutta, Bhaskar & Kar, Anirban, 2004. "Cost monotonicity, consistency and minimum cost spanning tree games," Games and Economic Behavior, Elsevier, vol. 48(2), pages 223-248, August.
    13. Brams,Steven J. & Taylor,Alan D., 1996. "Fair Division," Cambridge Books, Cambridge University Press, number 9780521556446, September.
    14. Demko, Stephen & Hill, Theodore P., 1988. "Equitable distribution of indivisible objects," Mathematical Social Sciences, Elsevier, vol. 16(2), pages 145-158, October.
    15. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "Minimum cost spanning extension problems : The proportional rule and the decentralized rule," Other publications TiSEM 2c6cd46b-7e72-4262-a479-3, Tilburg University, School of Economics and Management.
    16. Norde, H.W. & Moretti, S. & Tijs, S.H., 2001. "Minimum Cost Spanning Tree Games and Population Monotonic Allocation Schemes," Other publications TiSEM 794e124d-6be4-494d-a14f-4, Tilburg University, School of Economics and Management.
    17. Brânzei, R. & Moretti, S. & Norde, H.W. & Tijs, S.H., 2003. "The P-Value for Cost Sharing in Minimum Cost Spanning Tree Situations," Discussion Paper 2003-129, Tilburg University, Center for Economic Research.
    18. Moulin, H., 1986. "Characterizations of the pivotal mechanism," Journal of Public Economics, Elsevier, vol. 31(1), pages 53-78, October.
    19. Sharkey, W.W., 1991. "Network Models in Economics," Papers 69, Bell Communications - Economic Research Group.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juarez, Ruben & Ko, Chiu Yu & Xue, Jingyi, 2018. "Sharing sequential values in a network," Journal of Economic Theory, Elsevier, vol. 177(C), pages 734-779.
    2. Jens Leth Hougaard & Mich Tvede, 2020. "Trouble Comes in Threes: Core stability in Minimum Cost Connection Networks," IFRO Working Paper 2020/07, University of Copenhagen, Department of Food and Resource Economics.
    3. Anna bogomolnaia Ron Holzman Herve Moulin, 2021. "Wost Case in Voting and Bargaining," Papers 2104.02316, arXiv.org.
    4. Jens Leth Hougaard & Hervé Moulin, 2018. "Sharing the cost of risky projects," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 65(3), pages 663-679, May.
    5. Hougaard, Jens Leth & Tvede, Mich, 2012. "Truth-telling and Nash equilibria in minimum cost spanning tree models," European Journal of Operational Research, Elsevier, vol. 222(3), pages 566-570.
    6. Anna Bogomolnaia & Ron Holzman & Hervé Moulin, 2021. "Worst Case in Voting and Bargaining," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-03196999, HAL.
    7. Han, Lining & Juarez, Ruben, 2018. "Free intermediation in resource transmission," Games and Economic Behavior, Elsevier, vol. 111(C), pages 75-84.
    8. Bogomolnaia, Anna & Holzman, Ron & Moulin, Hervé, 2023. "On guarantees, vetoes and random dictators," Theoretical Economics, Econometric Society, vol. 18(1), January.
    9. Hougaard, Jens Leth & Tvede, Mich, 2022. "Trouble comes in threes: Core stability in minimum cost connection networks," European Journal of Operational Research, Elsevier, vol. 297(1), pages 319-324.
    10. María Gómez-Rúa & Juan Vidal-Puga, 2017. "A monotonic and merge-proof rule in minimum cost spanning tree situations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 813-826, March.
    11. Jens Leth Hougaard & Mich Tvede, 2010. "Strategyproof Nash Equilibria in Minimum Cost Spanning Tree Models," MSAP Working Paper Series 01_2010, University of Copenhagen, Department of Food and Resource Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dutta, Bhaskar & Mishra, Debasis, 2012. "Minimum cost arborescences," Games and Economic Behavior, Elsevier, vol. 74(1), pages 120-143.
    2. Bogomolnaia, Anna & Moulin, Hervé, 2010. "Sharing a minimal cost spanning tree: Beyond the Folk solution," Games and Economic Behavior, Elsevier, vol. 69(2), pages 238-248, July.
    3. Moulin, Hervé, 2014. "Pricing traffic in a spanning network," Games and Economic Behavior, Elsevier, vol. 86(C), pages 475-490.
    4. María Gómez-Rúa & Juan Vidal-Puga, 2017. "A monotonic and merge-proof rule in minimum cost spanning tree situations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 813-826, March.
    5. Chun, Youngsub & Lee, Joosung, 2012. "Sequential contributions rules for minimum cost spanning tree problems," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 136-143.
    6. Bergantiños, Gustavo & Vidal-Puga, Juan, 2020. "Cooperative games for minimum cost spanning tree problems," MPRA Paper 104911, University Library of Munich, Germany.
    7. Anna Bogomolnaia & Ron Holzman & Hervé Moulin, 2010. "Sharing the Cost of a Capacity Network," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 173-192, February.
    8. Tijs, S.H. & Brânzei, R. & Moretti, S. & Norde, H.W., 2004. "Obligation Rules for Minimum Cost Spanning Tree Situations and their Monotonicity Properties," Other publications TiSEM 78d24994-1074-4329-b911-c, Tilburg University, School of Economics and Management.
    9. Christian Trudeau, 2014. "Linking the Kar and folk solutions through a problem separation property," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(4), pages 845-870, November.
    10. Gomez-Rua, Maria & Vidal-Puga, Juan, 2006. "No advantageous merging in minimum cost spanning tree problems," MPRA Paper 601, University Library of Munich, Germany.
    11. Tijs, Stef & Branzei, Rodica & Moretti, Stefano & Norde, Henk, 2006. "Obligation rules for minimum cost spanning tree situations and their monotonicity properties," European Journal of Operational Research, Elsevier, vol. 175(1), pages 121-134, November.
    12. Hernández, Penélope & Peris, Josep E. & Silva-Reus, José A., 2016. "Strategic sharing of a costly network," Journal of Mathematical Economics, Elsevier, vol. 66(C), pages 72-82.
    13. Norde, Henk, 2019. "The degree and cost adjusted folk solution for minimum cost spanning tree games," Games and Economic Behavior, Elsevier, vol. 113(C), pages 734-742.
    14. Kusunoki, Yoshifumi & Tanino, Tetsuzo, 2017. "Investigation on irreducible cost vectors in minimum cost arborescence problems," European Journal of Operational Research, Elsevier, vol. 261(1), pages 214-221.
    15. Norde, H.W., 2013. "The Degree and Cost Adjusted Folk Solution for Minimum Cost Spanning Tree Games," Discussion Paper 2013-039, Tilburg University, Center for Economic Research.
    16. Hernández, Penélope & Peris, Josep E. & Vidal-Puga, Juan, 2023. "A non-cooperative approach to the folk rule in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 307(2), pages 922-928.
    17. Bergantinos, Gustavo & Lorenzo-Freire, Silvia, 2008. ""Optimistic" weighted Shapley rules in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 185(1), pages 289-298, February.
    18. Gustavo Bergantiños & María Gómez-Rúa, 2015. "An axiomatic approach in minimum cost spanning tree problems with groups," Annals of Operations Research, Springer, vol. 225(1), pages 45-63, February.
    19. Trudeau, Christian & Vidal-Puga, Juan, 2017. "On the set of extreme core allocations for minimal cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 169(C), pages 425-452.
    20. Moretti, S. & Alparslan-Gok, S.Z. & Brânzei, R. & Tijs, S.H., 2008. "Connection Situations under Uncertainty," Other publications TiSEM e9771ffd-ce59-4b8d-a2c8-d, Tilburg University, School of Economics and Management.

    More about this item

    Keywords

    pricing rules; minimum cost spanning trees; canonical pricing rule; stand-alone cost; decentralization;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • D60 - Microeconomics - - Welfare Economics - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kud:kuiedp:0824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Hoffmann (email available below). General contact details of provider: https://edirc.repec.org/data/okokudk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.