[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/18-13.html
   My bibliography  Save this paper

Asymptotic theory for the QMLE in GARCH-X models with stationary and non-stationary covariates

Author

Listed:
  • Heejoon Han

    (Institute for Fiscal Studies)

  • Dennis Kristensen

    (Institute for Fiscal Studies and University College London)

Abstract
This paper investigates the asymptotic properties of the Gaussian quasi-maximum-likelihood estimators (QMLE's) of the GARCH model augmented by including an additional explanatory variable- the so-called GARCH-X model. The additional covariate is allowed to exhibit any degree of persistence as captured by its long-memory parameter dx; in particular, we allow for both stationary and non-stationary covariates. We show that the QMLE's of the parameters entering the volatility equation are consistent and mixed-normally distributed in large samples. The convergence rates and limiting distributions of the QMLE's depend on whether the regressor is stationary or not. However, standard inferential tools for the parameters are robust to the level of persistence of the regressor with t-statistics following standard Normal distributions in large sample irrespective of whether the regressor is stationary or not.

Suggested Citation

  • Heejoon Han & Dennis Kristensen, 2013. "Asymptotic theory for the QMLE in GARCH-X models with stationary and non-stationary covariates," CeMMAP working papers CWP18/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:18/13
    as

    Download full text from publisher

    File URL: http://www.cemmap.ac.uk/wps/cwp181313.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Torben G. Andersen & Nicola Fusari & Viktor Todorov, 2015. "Parametric Inference and Dynamic State Recovery From Option Panels," Econometrica, Econometric Society, vol. 83(3), pages 1081-1145, May.
    2. Kristensen, Dennis & Rahbek, Anders, 2010. "Likelihood-based inference for cointegration with nonlinear error-correction," Journal of Econometrics, Elsevier, vol. 158(1), pages 78-94, September.
    3. Dittmann, Ingolf & Granger, Clive W. J., 2002. "Properties of nonlinear transformations of fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 110(2), pages 113-133, October.
    4. Dominguez, Kathryn M., 1998. "Central bank intervention and exchange rate volatility1," Journal of International Money and Finance, Elsevier, vol. 17(1), pages 161-190, February.
    5. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    6. Kasparis, Ioannis & Andreou, Elena & Phillips, Peter C.B., 2015. "Nonparametric predictive regression," Journal of Econometrics, Elsevier, vol. 185(2), pages 468-494.
    7. Neil Shephard & Kevin Sheppard, 2010. "Realising the future: forecasting with high-frequency-based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
    8. Giampiero Gallo & Barbara Pacini, 2000. "The effects of trading activity on market volatility," The European Journal of Finance, Taylor & Francis Journals, vol. 6(2), pages 163-175.
    9. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2007. "A Model for Multivariate Non-negative Valued Processes in Financial Econometrics," Econometrics Working Papers Archive wp2007_16, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    10. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
    11. Jeff Fleming & Chris Kirby & Barbara Ostdiek, 2008. "The specification of GARCH models with stochastic covariates," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(10), pages 911-934, October.
    12. Bollerslev, Tim & Melvin, Michael, 1994. "Bid--ask spreads and volatility in the foreign exchange market : An empirical analysis," Journal of International Economics, Elsevier, vol. 36(3-4), pages 355-372, May.
    13. Hodrick, Robert J., 1989. "Risk, uncertainty, and exchange rates," Journal of Monetary Economics, Elsevier, vol. 23(3), pages 433-459, May.
    14. Jensen, Søren Tolver & Rahbek, Anders, 2004. "Asymptotic Inference For Nonstationary Garch," Econometric Theory, Cambridge University Press, vol. 20(6), pages 1203-1226, December.
    15. Escanciano, Juan Carlos, 2009. "Quasi-Maximum Likelihood Estimation Of Semi-Strong Garch Models," Econometric Theory, Cambridge University Press, vol. 25(2), pages 561-570, April.
    16. Gray, Stephen F., 1996. "Modeling the conditional distribution of interest rates as a regime-switching process," Journal of Financial Economics, Elsevier, vol. 42(1), pages 27-62, September.
    17. Blundell,Richard & Newey,Whitney K. & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521871532, September.
    18. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
    19. Anne Opschoor & Michel van der Wel & Dick van Dijk & Nick Taylor, 2011. "On the Effects of Private Information on Volatility," Tinbergen Institute Discussion Papers 11-077/4, Tinbergen Institute.
    20. Peter Reinhard Hansen & Zhuo (Albert) Huang & Howard Howan Shek, "undated". "Realized GARCH: A Complete Model of Returns and Realized Measures of Volatility," CREATES Research Papers 2010-13, Department of Economics and Business Economics, Aarhus University.
    21. Brenner, Robin J. & Harjes, Richard H. & Kroner, Kenneth F., 1996. "Another Look at Models of the Short-Term Interest Rate," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(1), pages 85-107, March.
    22. Annastiina Silvennoinen & Timo Ter�svirta, 2015. "Modeling Conditional Correlations of Asset Returns: A Smooth Transition Approach," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 174-197, February.
    23. Niklas Wagner & Terry Marsh, 2005. "Surprise volume and heteroskedasticity in equity market returns," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 153-168.
    24. Blundell,Richard & Newey,Whitney & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521692106, September.
    25. Han, Heejoon & Park, Joon Y., 2012. "ARCH/GARCH with persistent covariate: Asymptotic theory of MLE," Journal of Econometrics, Elsevier, vol. 167(1), pages 95-112.
    26. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    27. Kristensen, Dennis & Rahbek, Anders, 2005. "ASYMPTOTICS OF THE QMLE FOR A CLASS OF ARCH(q) MODELS," Econometric Theory, Cambridge University Press, vol. 21(5), pages 946-961, October.
    28. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    29. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    30. Blundell,Richard & Newey,Whitney K. & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521692090, September.
    31. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    32. Hagiwara, May & Herce, Miguel A, 1999. "Endogenous Exchange Rate Volatility, Trading Volume and Interest Rate Differentials in a Model of Portfolio Selection," Review of International Economics, Wiley Blackwell, vol. 7(2), pages 202-218, May.
    33. Park, Joon Y. & Phillips, Peter C.B., 1999. "Asymptotics For Nonlinear Transformations Of Integrated Time Series," Econometric Theory, Cambridge University Press, vol. 15(3), pages 269-298, June.
    34. Paul Berhanu Girma & Mbodja Mougoué, 2002. "An empirical examination of the relation between futures spreads volatility, volume, and open interest," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 22(11), pages 1083-1102, November.
    35. Soosung Hwang & Steve Satchell, 2005. "GARCH model with cross-sectional volatility: GARCHX models," Applied Financial Economics, Taylor & Francis Journals, vol. 15(3), pages 203-216.
    36. Peter Exterkate, 2012. "Model Selection in Kernel Ridge Regression," CREATES Research Papers 2012-10, Department of Economics and Business Economics, Aarhus University.
    37. Blundell,Richard & Newey,Whitney & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521871549, September.
    38. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(1), pages 17-39, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bu, Ruijun & Kim, Jihyun & Wang, Bin, 2023. "Uniform and Lp convergences for nonparametric continuous time regressions with semiparametric applications," Journal of Econometrics, Elsevier, vol. 235(2), pages 1934-1954.
    2. Heejoon Han & Myung D. Park, 2013. "Comparison of Realized Measure and Implied Volatility in Forecasting Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 522-533, September.
    3. Neil Shephard & Kevin Sheppard, 2010. "Realising the future: forecasting with high-frequency-based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
    4. Francq, Christian & Sucarrat, Genaro, 2017. "An equation-by-equation estimator of a multivariate log-GARCH-X model of financial returns," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 16-32.
    5. Han, Heejoon & Park, Joon Y., 2008. "Time series properties of ARCH processes with persistent covariates," Journal of Econometrics, Elsevier, vol. 146(2), pages 275-292, October.
    6. Peter Reinhard Hansen & Zhuo (Albert) Huang & Howard Howan Shek, "undated". "Realized GARCH: A Complete Model of Returns and Realized Measures of Volatility," CREATES Research Papers 2010-13, Department of Economics and Business Economics, Aarhus University.
    7. Ole E. Barndorff-Nielsen & Silja Kinnebrock & Neil Shephard, 2008. "Measuring downside risk - realised semivariance," OFRC Working Papers Series 2008fe01, Oxford Financial Research Centre.
    8. De Lira Salvatierra, Irving & Patton, Andrew J., 2015. "Dynamic copula models and high frequency data," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 120-135.
    9. Neil Shephard & Silja Kinnebrock & Ole E. Barndorff-Neilsen, 2008. "Measuring downside risk - realised semivariance," Economics Series Working Papers 382, University of Oxford, Department of Economics.
    10. Asger Lunde & Kasper V. Olesen, 2014. "Modeling and Forecasting the Distribution of Energy Forward Returns - Evidence from the Nordic Power Exchange," CREATES Research Papers 2013-19, Department of Economics and Business Economics, Aarhus University.
    11. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    12. Harry-Paul Vander Elst, 2015. "FloGARCH: Realizing Long Memory and Asymmetries in Returns Valitility," Working Papers ECARES ECARES 2015-12, ULB -- Universite Libre de Bruxelles.
    13. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    14. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    15. Beatriz Vaz de Melo Mendes & Victor Bello Accioly, 2017. "Improving (E)GARCH forecasts with robust realized range measures: Evidence from international markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 41(4), pages 631-658, October.
    16. Kristensen, Dennis & Salanié, Bernard, 2017. "Higher-order properties of approximate estimators," Journal of Econometrics, Elsevier, vol. 198(2), pages 189-208.
    17. Dennis Kristensen & Bernard Salanié, 2010. "Higher Order Improvements for Approximate Estimators," CAM Working Papers 2010-04, University of Copenhagen. Department of Economics. Centre for Applied Microeconometrics.
    18. Peter Reinhard Hansen & Zhuo Huang, 2016. "Exponential GARCH Modeling With Realized Measures of Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 269-287, April.
    19. Nguyen, Giang & Engle, Robert & Fleming, Michael & Ghysels, Eric, 2020. "Liquidity and volatility in the U.S. Treasury market," Journal of Econometrics, Elsevier, vol. 217(2), pages 207-229.
    20. repec:hal:journl:peer-00815564 is not listed on IDEAS
    21. Han, Heejoon & Park, Joon Y., 2012. "ARCH/GARCH with persistent covariate: Asymptotic theory of MLE," Journal of Econometrics, Elsevier, vol. 167(1), pages 95-112.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:18/13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.