0 leads to a long-memory process with the same or a smaller long-memory parameter depending on the Hermite rank of the transformation. Any nonlinear transformation of an antipersistent Gaussian I(d) process is I(0). For non-stationary I(d) processes, every integer power transformation is non-stationary and exhibits a deterministic trend in mean and in variance. In particular, the square of a non-stationary Gaussian I(d) process still has long memory with parameter d, whereas the square of a stationary Gaussian I(d) process shows less dependence than the initial process. Simulation results for other transformations are also discussed."> 0 leads to a long-memory process with the same or a smaller long-memory parameter depending on the Hermite rank of the transformation. Any nonlinear transformation of an antipersistent Gaussian I(d) process is I(0). For non-stationary I(d) processes, every integer power transformation is non-stationary and exhibits a deterministic trend in mean and in variance. In particular, the square of a non-stationary Gaussian I(d) process still has long memory with parameter d, whereas the square of a stationary Gaussian I(d) process shows less dependence than the initial process. Simulation results for other transformations are also discussed.">
[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/cdl/ucsdec/qt0kk9x0mc.html
   My bibliography  Save this paper

Properties of Nonlinear Transformations of Fractionally Integrated Processes

Author

Listed:
  • Dittmann, Ingolf
  • Granger, Clive W.J.
Abstract
This paper shows that the properties of nonlinear transformations of a fractionally integrated process depend strongly on whether the initial series is stationary or not. Transforming a stationary Gaussian I(d) process with d > 0 leads to a long-memory process with the same or a smaller long-memory parameter depending on the Hermite rank of the transformation. Any nonlinear transformation of an antipersistent Gaussian I(d) process is I(0). For non-stationary I(d) processes, every integer power transformation is non-stationary and exhibits a deterministic trend in mean and in variance. In particular, the square of a non-stationary Gaussian I(d) process still has long memory with parameter d, whereas the square of a stationary Gaussian I(d) process shows less dependence than the initial process. Simulation results for other transformations are also discussed.

Suggested Citation

  • Dittmann, Ingolf & Granger, Clive W.J., 2000. "Properties of Nonlinear Transformations of Fractionally Integrated Processes," University of California at San Diego, Economics Working Paper Series qt0kk9x0mc, Department of Economics, UC San Diego.
  • Handle: RePEc:cdl:ucsdec:qt0kk9x0mc
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/0kk9x0mc.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian Gourieroux & Joann Jasiak, 2011. "Nonlinear Persistence and Copersistence," Palgrave Macmillan Books, in: Greg N. Gregoriou & Razvan Pascalau (ed.), Nonlinear Financial Econometrics: Markov Switching Models, Persistence and Nonlinear Cointegration, chapter 4, pages 77-103, Palgrave Macmillan.
    2. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    3. C. W. J. Granger & Jeff Hallman, 1991. "Nonlinear Transformations Of Integrated Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 12(3), pages 207-224, May.
    4. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    5. C. W. J. Granger, 1988. "Models That Generate Trends," Journal of Time Series Analysis, Wiley Blackwell, vol. 9(4), pages 329-343, July.
    6. Clifford M. Hurvich & Rohit Deo & Julia Brodsky, 1998. "The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 19-46, January.
    7. Granger, Clive W J, 1995. "Modelling Nonlinear Relationships between Extended-Memory Variables," Econometrica, Econometric Society, vol. 63(2), pages 265-279, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dittmann, Ingolf & Granger, Clive W. J., 2002. "Properties of nonlinear transformations of fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 110(2), pages 113-133, October.
    2. Pierre Perron & Zhongjun Qu, 2007. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts," Boston University - Department of Economics - Working Papers Series wp2007-044, Boston University - Department of Economics.
    3. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
    4. Pierre Perron & Zhongjun Qu, 2006. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts and its Implications for Stock Returns Volatility," Boston University - Department of Economics - Working Papers Series WP2006-016, Boston University - Department of Economics.
    5. Zied Ftiti & Slim Chaouachi, 2018. "What Can We Learn About the Real Exchange Rate Behavior in the Case of a Peripheral Country?," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(3), pages 681-707, September.
    6. Christian Gourieroux & Joann Jasiak, 1999. "Nonlinear Persistence and Copersistence," Working Papers 2000_1, York University, Department of Economics.
    7. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    8. Härdle, Wolfgang Karl & Mungo, Julius, 2007. "Long memory persistence in the factor of Implied volatility dynamics," SFB 649 Discussion Papers 2007-027, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    9. Manmohan S. Kumar & Tatsuyoshi Okimoto, 2007. "Dynamics of Persistence in International Inflation Rates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(6), pages 1457-1479, September.
    10. Gary Biglaiser & Ching-to Albert Ma, 2007. "Moonlighting: public service and private practice," RAND Journal of Economics, RAND Corporation, vol. 38(4), pages 1113-1133, December.
    11. Kruse, Robinson & Sibbertsen, Philipp, 2012. "Long memory and changing persistence," Economics Letters, Elsevier, vol. 114(3), pages 268-272.
    12. Hassler, U. & Marmol, F. & Velasco, C., 2006. "Residual log-periodogram inference for long-run relationships," Journal of Econometrics, Elsevier, vol. 130(1), pages 165-207, January.
    13. Erhard Reschenhofer & Manveer K. Mangat, 2021. "Fast computation and practical use of amplitudes at non-Fourier frequencies," Computational Statistics, Springer, vol. 36(3), pages 1755-1773, September.
    14. Derek Bond & Michael J. Harrison & Edward J. O'Brien, 2005. "Testing for Long Memory and Nonlinear Time Series: A Demand for Money Study," Trinity Economics Papers tep20021, Trinity College Dublin, Department of Economics.
    15. Gil-Alana, L.A., 2006. "Fractional integration in daily stock market indexes," Review of Financial Economics, Elsevier, vol. 15(1), pages 28-48.
    16. Yoon, Gawon, 2005. "An introduction to I([infinity]) processes," Economic Modelling, Elsevier, vol. 22(3), pages 473-483, May.
    17. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    18. Derek Bond & Michael J. Harrison & Edward J. O'Brien, 2006. "Purchasing Power Parity: The Irish Experience Re-visited," Trinity Economics Papers tep200615, Trinity College Dublin, Department of Economics.
    19. Smith, Aaron, 2005. "Level Shifts and the Illusion of Long Memory in Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 321-335, July.
    20. Charfeddine, Lanouar & Guégan, Dominique, 2012. "Breaks or long memory behavior: An empirical investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5712-5726.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:ucsdec:qt0kk9x0mc. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/deucsus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.