[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ide/wpaper/22800.html
   My bibliography  Save this paper

Nonparametric Estimation of An Instrumental Regression: A Quasi-Bayesian Approach Based on Regularized Posterior

Author

Listed:
  • Florens, Jean-Pierre
  • Simoni, Anna
Abstract
We propose a Quasi-Bayesian nonparametric approach to estimating the structural relationship ' among endogenous variables when instruments are available. We show that the posterior distribution of ' is inconsistent in the frequentist sense. We interpret this fact as the ill-posedness of the Bayesian inverse problem defined by the relation that characterizes the structural function '. To solve this problem, we construct a regularized posterior distribution, based on a Tikhonov regularization of the inverse of the marginal variance of the sample, which is justified by a penalized projection argument. This regularized posterior distribution is consistent in the frequentist sense and its mean can be interpreted as the mean of the exact posterior distribution resulting from a gaussian prior distribution with a shrinking covariance operator.

Suggested Citation

  • Florens, Jean-Pierre & Simoni, Anna, 2010. "Nonparametric Estimation of An Instrumental Regression: A Quasi-Bayesian Approach Based on Regularized Posterior," IDEI Working Papers 622, Institut d'Économie Industrielle (IDEI), Toulouse.
  • Handle: RePEc:ide:wpaper:22800
    as

    Download full text from publisher

    File URL: http://idei.fr/sites/default/files/medias/doc/wp/2010/wp_idei_622.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Frédérique Fève & Jean-Pierre Florens, 2010. "The practice of non-parametric estimation by solving inverse problems: the example of transformation models," Econometrics Journal, Royal Economic Society, vol. 13(3), pages 1-27, October.
    2. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.
    3. Chen, Xiaohong & Reiss, Markus, 2011. "On Rate Optimality For Ill-Posed Inverse Problems In Econometrics," Econometric Theory, Cambridge University Press, vol. 27(3), pages 497-521, June.
    4. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521818728, September.
    5. S. Darolles & Y. Fan & J. P. Florens & E. Renault, 2011. "Nonparametric Instrumental Regression," Econometrica, Econometric Society, vol. 79(5), pages 1541-1565, September.
    6. Carrasco, Marine & Florens, Jean-Pierre, 2000. "Generalization Of Gmm To A Continuum Of Moment Conditions," Econometric Theory, Cambridge University Press, vol. 16(6), pages 797-834, December.
    7. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521524131, September.
    8. Florens, Jean-Pierre & Johannes, Jan & Van Bellegem, Sébastien, 2011. "Identification And Estimation By Penalization In Nonparametric Instrumental Regression," Econometric Theory, Cambridge University Press, vol. 27(3), pages 472-496, June.
    9. Florens, Jean-Pierre & Johannes, Jan & Van Bellegem, Sebastien, 2011. "Identification and estimation by penalization in Nonparametric Instrumental Regression," LIDAM Reprints ISBA 2011046, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2007. "Semi-Nonparametric IV Estimation of Shape-Invariant Engel Curves," Econometrica, Econometric Society, vol. 75(6), pages 1613-1669, November.
    11. Carrasco, Marine & Florens, Jean-Pierre & Renault, Eric, 2007. "Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and Regularization," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 77, Elsevier.
    12. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    13. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521818742, September.
    14. Jean‐Pierre Florens & Jan Johannes & Sébastien Van Bellegem, 2012. "Instrumental regression in partially linear models," Econometrics Journal, Royal Economic Society, vol. 15(2), pages 304-324, June.
    15. Mathias Dewatripont & Lars Peter Hansen & Stephen Turnovsky, 2003. "Advances in Economics and Econometrics: Theory and Applications, Eighth World Congress," ULB Institutional Repository 2013/176003, ULB -- Universite Libre de Bruxelles.
    16. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521524117, September.
    17. Jean-Pierre Florens & Anna Simoni, 2012. "Regularized Posteriors in Linear Ill-Posed Inverse Problems," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(2), pages 214-235, June.
    18. Richard Blundell & James L. Powell, 2001. "Endogeneity in nonparametric and semiparametric regression models," CeMMAP working papers 09/01, Institute for Fiscal Studies.
    19. Gagliardini, Patrick & Scaillet, Olivier, 2012. "Tikhonov regularization for nonparametric instrumental variable estimators," Journal of Econometrics, Elsevier, vol. 167(1), pages 61-75.
    20. FLORENS, Jean-Pierre & JOHANNES, Jan & VAN BELLEGEM, Sébastien, 2011. "Identification and estimation by penalization in nonparametric instrumental regression," LIDAM Reprints CORE 2320, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    21. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521818735, September.
    22. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521524124, September.
    23. Chen, Xiaohong & White, Halbert, 1998. "Central Limit And Functional Central Limit Theorems For Hilbert-Valued Dependent Heterogeneous Arrays With Applications," Econometric Theory, Cambridge University Press, vol. 14(2), pages 260-284, April.
    24. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, September.
    25. Mathias Dewatripont & Lars Peter Hansen & Stephen Turnovsky, 2003. "Advances in economics and econometrics :theory and applications," ULB Institutional Repository 2013/9557, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siddhartha Chib & Minchul Shin & Anna Simoni, 2022. "Bayesian estimation and comparison of conditional moment models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 740-764, July.
    2. Centorrino Samuele & Feve Frederique & Florens Jean-Pierre, 2017. "Additive Nonparametric Instrumental Regressions: A Guide to Implementation," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-25, January.
    3. Liao, Yuan & Simoni, Anna, 2012. "Semi-parametric Bayesian Partially Identified Models based on Support Function," MPRA Paper 43262, University Library of Munich, Germany.
    4. Xiaohong Chen & Timothy M. Christensen, 2013. "Optimal uniform convergence rates for sieve nonparametric instrumental variables regression," CeMMAP working papers CWP56/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Xiaohong Chen & Yin Jia Jeff Qiu, 2016. "Methods for Nonparametric and Semiparametric Regressions with Endogeneity: A Gentle Guide," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 259-290, October.
    6. Hedibert F. Lopes & Nicholas G. Polson, 2014. "Bayesian Instrumental Variables: Priors and Likelihoods," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 100-121, June.
    7. Ryo Kato & Takahiro Hoshino, 2018. "Semiparametric Bayes Instrumental Variable Estimation with Many Weak Instruments," Discussion Paper Series DP2018-14, Research Institute for Economics & Business Administration, Kobe University.
    8. Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
    9. Xiaohong Chen & Timothy M. Christensen, 2015. "Optimal sup-norm rates, adaptivity and inference in nonparametric instrumental variables estimation," CeMMAP working papers 32/15, Institute for Fiscal Studies.
    10. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.
    11. Xiaohong Chen & Timothy M. Christensen, 2013. "Optimal uniform convergence rates for sieve nonparametric instrumental variables regression," CeMMAP working papers 56/13, Institute for Fiscal Studies.
    12. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    13. Manuel Wiesenfarth & Carlos Matías Hisgen & Thomas Kneib & Carmen Cadarso-Suarez, 2014. "Bayesian Nonparametric Instrumental Variables Regression Based on Penalized Splines and Dirichlet Process Mixtures," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 468-482, July.
    14. Joel L. Horowitz, 2013. "Adaptive nonparametric instrumental variables estimation: empirical choice of the regularization parameter," CeMMAP working papers CWP30/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2013. "Historical Developments in Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 13-191/III, Tinbergen Institute.
    16. Ziyu Wang & Yuhao Zhou & Jun Zhu, 2022. "Fast Instrument Learning with Faster Rates," Papers 2205.10772, arXiv.org, revised Oct 2022.
    17. Joel L. Horowitz, 2013. "Adaptive nonparametric instrumental variables estimation: empirical choice of the regularization parameter," CeMMAP working papers 30/13, Institute for Fiscal Studies.
    18. Xiaohong Chen & Timothy Christensen, 2013. "Optimal Sup-norm Rates, Adaptivity and Inference in Nonparametric Instrumental Variables Estimation," Cowles Foundation Discussion Papers 1923R, Cowles Foundation for Research in Economics, Yale University, revised Apr 2015.
    19. Asin, Nicolas & Johannes, Jan, 2016. "Adaptive non-parametric instrumental regression in the presence of dependence," LIDAM Discussion Papers ISBA 2016015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Liao, Yuan & Jiang, Wenxin, 2011. "Posterior consistency of nonparametric conditional moment restricted models," MPRA Paper 38700, University Library of Munich, Germany.
    21. Samuele Centorrino & Jean-Pierre Florens, 2014. "Nonparametric Instrumental Variable Estimation of Binary Response Models," Department of Economics Working Papers 14-07, Stony Brook University, Department of Economics.
    22. Horowitz, Joel L., 2014. "Adaptive nonparametric instrumental variables estimation: Empirical choice of the regularization parameter," Journal of Econometrics, Elsevier, vol. 180(2), pages 158-173.
    23. Centorrino, Samuele & Florens, Jean-Pierre, 2021. "Nonparametric Instrumental Variable Estimation of Binary Response Models with Continuous Endogenous Regressors," Econometrics and Statistics, Elsevier, vol. 17(C), pages 35-63.
    24. Ziyu Wang & Yucen Luo & Yueru Li & Jun Zhu & Bernhard Scholkopf, 2022. "Spectral Representation Learning for Conditional Moment Models," Papers 2210.16525, arXiv.org, revised Dec 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.
    2. Liao, Yuan & Jiang, Wenxin, 2011. "Posterior consistency of nonparametric conditional moment restricted models," MPRA Paper 38700, University Library of Munich, Germany.
    3. Christoph Breunig, 2019. "Goodness-of-Fit Tests based on Series Estimators in Nonparametric Instrumental Regression," Papers 1909.10133, arXiv.org.
    4. Frédérique Fève & Jean-Pierre Florens, 2010. "The practice of non-parametric estimation by solving inverse problems: the example of transformation models," Econometrics Journal, Royal Economic Society, vol. 13(3), pages 1-27, October.
    5. Hoderlein, Stefan & Nesheim, Lars & Simoni, Anna, 2017. "Semiparametric Estimation Of Random Coefficients In Structural Economic Models," Econometric Theory, Cambridge University Press, vol. 33(6), pages 1265-1305, December.
    6. Breunig, Christoph, 2015. "Goodness-of-fit tests based on series estimators in nonparametric instrumental regression," Journal of Econometrics, Elsevier, vol. 184(2), pages 328-346.
    7. Chen, Xiaohong & Reiss, Markus, 2011. "On Rate Optimality For Ill-Posed Inverse Problems In Econometrics," Econometric Theory, Cambridge University Press, vol. 27(3), pages 497-521, June.
    8. Jean‐Pierre Florens & Jan Johannes & Sébastien Van Bellegem, 2012. "Instrumental regression in partially linear models," Econometrics Journal, Royal Economic Society, vol. 15(2), pages 304-324, June.
    9. Gagliardini, Patrick & Scaillet, Olivier, 2012. "Tikhonov regularization for nonparametric instrumental variable estimators," Journal of Econometrics, Elsevier, vol. 167(1), pages 61-75.
    10. Fabian Dunker, 2015. "Adaptive estimation for some nonparametric instrumental variable models," Papers 1511.03977, arXiv.org, revised Aug 2021.
    11. Feng Yao & Junsen Zhang, 2015. "Efficient kernel-based semiparametric IV estimation with an application to resolving a puzzle on the estimates of the return to schooling," Empirical Economics, Springer, vol. 48(1), pages 253-281, February.
    12. Peter C.B. Phillips & Liangjun Su, 2009. "Nonparametric Structural Estimation via Continuous Location Shifts in an Endogenous Regressor," Cowles Foundation Discussion Papers 1702, Cowles Foundation for Research in Economics, Yale University.
    13. Dunker, Fabian & Florens, Jean-Pierre & Hohage, Thorsten & Johannes, Jan & Mammen, Enno, 2014. "Iterative estimation of solutions to noisy nonlinear operator equations in nonparametric instrumental regression," Journal of Econometrics, Elsevier, vol. 178(P3), pages 444-455.
    14. Matzkin, Rosa L., 2016. "On independence conditions in nonseparable models: Observable and unobservable instruments," Journal of Econometrics, Elsevier, vol. 191(2), pages 302-311.
    15. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    16. Xiaohong Chen & Timothy Christensen, 2013. "Optimal Uniform Convergence Rates for Sieve Nonparametric Instrumental Variables Regression," Cowles Foundation Discussion Papers 1923, Cowles Foundation for Research in Economics, Yale University.
    17. Asin, Nicolas & Johannes, Jan, 2016. "Adaptive non-parametric instrumental regression in the presence of dependence," LIDAM Discussion Papers ISBA 2016015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Joel L. Horowitz & Sokbae Lee, 2007. "Nonparametric Instrumental Variables Estimation of a Quantile Regression Model," Econometrica, Econometric Society, vol. 75(4), pages 1191-1208, July.
    19. Xiaohong Chen & Victor Chernozhukov & Sokbae Lee & Whitney K. Newey, 2014. "Local Identification of Nonparametric and Semiparametric Models," Econometrica, Econometric Society, vol. 82(2), pages 785-809, March.
    20. Severini, Thomas A. & Tripathi, Gautam, 2006. "Some Identification Issues In Nonparametric Linear Models With Endogenous Regressors," Econometric Theory, Cambridge University Press, vol. 22(2), pages 258-278, April.

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ide:wpaper:22800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/idtlsfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.