[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/cca/wpaper/96.html
   My bibliography  Save this paper

Multivariate Variance Gamma and Gaussian dependence: a study with copulas

Author

Listed:
  • Elisa Luciano
  • Patrizia Semeraro
Abstract
This paper explores the dynamic dependence properties of a Levy process, the Variance Gamma, which has non Gaussian marginal features and non Gaussian dependence. In a static context, such a non Gaussian dependence should be represented via copulas. Copulas, however, are not able to capture the dynamics of dependence. By computing the distance between the Gaussian copula and the actual one, we show that even a non Gaussian process, such as the Variance Gamma, can "converge" to linear dependence over time. Empirical versions of different dependence measures confirm the result.

Suggested Citation

  • Elisa Luciano & Patrizia Semeraro, 2008. "Multivariate Variance Gamma and Gaussian dependence: a study with copulas," Carlo Alberto Notebooks 96, Collegio Carlo Alberto.
  • Handle: RePEc:cca:wpaper:96
    as

    Download full text from publisher

    File URL: https://www.carloalberto.org/wp-content/uploads/2018/11/no.96.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boris Buchmann & Benjamin Kaehler & Ross Maller & Alexander Szimayer, 2015. "Multivariate Subordination using Generalised Gamma Convolutions with Applications to V.G. Processes and Option Pricing," Papers 1502.03901, arXiv.org, revised Oct 2016.
    2. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.

    More about this item

    JEL classification:

    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cca:wpaper:96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Giovanni Bert (email available below). General contact details of provider: https://edirc.repec.org/data/fccaait.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.