[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1502.03901.html
   My bibliography  Save this paper

Multivariate Subordination using Generalised Gamma Convolutions with Applications to V.G. Processes and Option Pricing

Author

Listed:
  • Boris Buchmann
  • Benjamin Kaehler
  • Ross Maller
  • Alexander Szimayer
Abstract
We unify and extend a number of approaches related to constructing multivariate Variance-Gamma (V.G.) models for option pricing. An overarching model is derived by subordinating multivariate Brownian motion to a subordinator from the Thorin (1977) class of generalised Gamma convolution subordinators. A class of models due to Grigelionis (2007), which contains the well-known Madan-Seneta V.G. model, is of this type, but our multivariate generalization is considerably wider, allowing in particular for processes with infinite variation and a variety of dependencies between the underlying processes. Multivariate classes developed by P\'erez-Abreu and Stelzer (2012) and Semeraro (2008) and Guillaume (2013) are also submodels. The new models are shown to be invariant under Esscher transforms, and quite explicit expressions for canonical measures (and transition densities in some cases) are obtained, which permit applications such as option pricing using PIDEs or tree based methodologies. We illustrate with best-of and worst-of European and American options on two assets.

Suggested Citation

  • Boris Buchmann & Benjamin Kaehler & Ross Maller & Alexander Szimayer, 2015. "Multivariate Subordination using Generalised Gamma Convolutions with Applications to V.G. Processes and Option Pricing," Papers 1502.03901, arXiv.org, revised Oct 2016.
  • Handle: RePEc:arx:papers:1502.03901
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1502.03901
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Griffiths, R. C., 1984. "Characterization of infinitely divisible multivariate gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 15(1), pages 13-20, August.
    3. Florence Guillaume, 2013. "The αVG model for multivariate asset pricing: calibration and extension," Review of Derivatives Research, Springer, vol. 16(1), pages 25-52, April.
    4. Fung, Thomas & Seneta, Eugene, 2010. "Extending the multivariate generalised t and generalised VG distributions," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 154-164, January.
    5. Thomas Fung & Eugene Seneta, 2010. "Modelling and Estimation for Bivariate Financial Returns," International Statistical Review, International Statistical Institute, vol. 78(1), pages 117-133, April.
    6. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    7. Elisa Luciano & Patrizia Semeraro, 2010. "A Generalized Normal Mean-Variance Mixture For Return Processes In Finance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(03), pages 415-440.
    8. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    9. Richard Finlay & Eugene Seneta, 2008. "Stationary‐Increment Variance‐Gamma and t Models: Simulation and Parameter Estimation," International Statistical Review, International Statistical Institute, vol. 76(2), pages 167-186, August.
    10. Kallsen, Jan & Tankov, Peter, 2006. "Characterization of dependence of multidimensional Lévy processes using Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1551-1572, August.
    11. Mathai, A. M. & Moschopoulos, P. G., 1991. "On a multivariate gamma," Journal of Multivariate Analysis, Elsevier, vol. 39(1), pages 135-153, October.
    12. Patrizia Semeraro, 2006. "A Multivariate Time-Changed Lévy Model for Financial Applications," ICER Working Papers - Applied Mathematics Series 10-2006, ICER - International Centre for Economic Research.
    13. Laura Ballotta & Efrem Bonfiglioli, 2016. "Multivariate asset models using Lévy processes and applications," The European Journal of Finance, Taylor & Francis Journals, vol. 22(13), pages 1320-1350, October.
    14. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    15. Elisa Luciano & Patrizia Semeraro, 2008. "Multivariate Variance Gamma and Gaussian dependence: a study with copulas," Carlo Alberto Notebooks 96, Collegio Carlo Alberto.
    16. Patrizia Semeraro, 2008. "A Multivariate Variance Gamma Model For Financial Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-18.
    17. Marco Corazza & Florence Legros & Cira Perna & Marilena Sibillo, 2017. "Mathematical and Statistical Methods for Actuarial Sciences and Finance," Post-Print hal-01776135, HAL.
    18. Ross A. Maller & David H. Solomon & Alex Szimayer, 2006. "A Multinomial Approximation For American Option Prices In Lévy Process Models," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 613-633, October.
    19. Pérez-Abreu, Victor & Stelzer, Robert, 2014. "Infinitely divisible multivariate and matrix Gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 155-175.
    20. Küchler, Uwe & Tappe, Stefan, 2008. "On the shapes of bilateral Gamma densities," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2478-2484, October.
    21. Reiichiro Kawai, 2009. "A multivariate Levy process model with linear correlation," Quantitative Finance, Taylor & Francis Journals, vol. 9(5), pages 597-606.
    22. Sato, Ken-iti, 2001. "Subordination and self-decomposability," Statistics & Probability Letters, Elsevier, vol. 54(3), pages 317-324, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    2. Boris Buchmann & Kevin W. Lu & Dilip B. Madan, 2018. "Calibration for Weak Variance-Alpha-Gamma Processes," Papers 1801.08852, arXiv.org, revised Jul 2018.
    3. Boris Buchmann & Kevin W. Lu & Dilip B. Madan, 2019. "Calibration for Weak Variance-Alpha-Gamma Processes," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1151-1164, December.
    4. Patrizia Semeraro, 2021. "Multivariate tempered stable additive subordination for financial models," Papers 2105.00844, arXiv.org, revised Sep 2021.
    5. Lynn Boen & Florence Guillaume, 2020. "Towards a $$\Delta $$Δ-Gamma Sato multivariate model," Review of Derivatives Research, Springer, vol. 23(1), pages 1-39, April.
    6. Patrizia Semeraro, 2022. "Multivariate tempered stable additive subordination for financial models," Mathematics and Financial Economics, Springer, volume 16, number 3, December.
    7. Florence Guillaume, 2018. "Multivariate Option Pricing Models With Lévy And Sato Vg Marginal Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-26, March.
    8. Roberto Marfè, 2012. "A generalized variance gamma process for financial applications," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 75-87, June.
    9. Roman Ivanov, 2015. "The distribution of the maximum of a variance gamma process and path-dependent option pricing," Finance and Stochastics, Springer, vol. 19(4), pages 979-993, October.
    10. Pérez-Abreu, Victor & Stelzer, Robert, 2014. "Infinitely divisible multivariate and matrix Gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 155-175.
    11. Florence Guillaume, 2013. "The αVG model for multivariate asset pricing: calibration and extension," Review of Derivatives Research, Springer, vol. 16(1), pages 25-52, April.
    12. Michele Leonardo Bianchi & Asmerilda Hitaj & Gian Luca Tassinari, 2020. "Multivariate non-Gaussian models for financial applications," Papers 2005.06390, arXiv.org.
    13. Buchmann, Boris & Lu, Kevin W. & Madan, Dilip B., 2020. "Self-decomposability of weak variance generalised gamma convolutions," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 630-655.
    14. Petar Jevtić & Marina Marena & Patrizia Semeraro, 2019. "Multivariate Marked Poisson Processes And Market Related Multidimensional Information Flows," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-26, March.
    15. Ivanov Roman V., 2018. "On risk measuring in the variance-gamma model," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 23-33, January.
    16. Roman V. Ivanov, 2018. "Option Pricing In The Variance-Gamma Model Under The Drift Jump," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-19, June.
    17. Göncü, Ahmet & Karahan, Mehmet Oğuz & Kuzubaş, Tolga Umut, 2016. "A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 69-83.
    18. Piergiacomo Sabino, 2021. "Pricing Energy Derivatives in Markets Driven by Tempered Stable and CGMY Processes of Ornstein-Uhlenbeck Type," Papers 2103.13252, arXiv.org.
    19. Alexandre Petkovic, 2009. "Three essays on exotic option pricing, multivariate Lévy processes and linear aggregation of panel models," ULB Institutional Repository 2013/210357, ULB -- Universite Libre de Bruxelles.
    20. Vladimir Panov, 2017. "Series Representations for Multivariate Time-Changed Lévy Models," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 97-119, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1502.03901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.