[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/bfr/banfra/332.html
   My bibliography  Save this paper

The Stability of Macroeconomic Systems with Bayesian Learners

Author

Listed:
  • Bullard, J.B.
  • Suda, J.
Abstract
We study abstract macroeconomic systems in which expectations play an important role. Consistent with the recent literature on recursive learning and expectations, we replace the agents in the economy with econometricians. Unlike the recursive learning literature, however, the econometricians in the analysis here are Bayesian learners. We are interested in the extent to which expectational stability remains the key concept in the Bayesian environment. We isolate conditions under which versions of expectational stability conditions govern the stability of these systems just as in the standard case of recursive learning. We conclude that Bayesian learning schemes, while they are more sophisticated, do not alter the essential expectational stability findings in the literature.

Suggested Citation

  • Bullard, J.B. & Suda, J., 2011. "The Stability of Macroeconomic Systems with Bayesian Learners," Working papers 332, Banque de France.
  • Handle: RePEc:bfr:banfra:332
    as

    Download full text from publisher

    File URL: https://publications.banque-france.fr/sites/default/files/medias/documents/working-paper_332_2011.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Thomas J. Sargent & Noah Williams, 2005. "Impacts of Priors on Convergence and Escapes from Nash Inflation," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 360-391, April.
    2. Wieland, Volker, 2000. "Learning by doing and the value of optimal experimentation," Journal of Economic Dynamics and Control, Elsevier, vol. 24(4), pages 501-534, April.
    3. Orphanides, Athanasios & Wieland, Volker, 2000. "Efficient Monetary Policy Design near Price Stability," Journal of the Japanese and International Economies, Elsevier, vol. 14(4), pages 327-365, December.
    4. George W. Evans & Seppo Honkapohja & Noah Williams, 2010. "Generalized Stochastic Gradient Learning," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 51(1), pages 237-262, February.
    5. Wieland, Volker, 2000. "Monetary policy, parameter uncertainty and optimal learning," Journal of Monetary Economics, Elsevier, vol. 46(1), pages 199-228, August.
    6. Taylor, John B, 1980. "Aggregate Dynamics and Staggered Contracts," Journal of Political Economy, University of Chicago Press, vol. 88(1), pages 1-23, February.
    7. Andrew Levin & Volker Wieland & John C. Williams, 2003. "The Performance of Forecast-Based Monetary Policy Rules Under Model Uncertainty," American Economic Review, American Economic Association, vol. 93(3), pages 622-645, June.
    8. Marcet, Albert & Sargent, Thomas J., 1989. "Convergence of least squares learning mechanisms in self-referential linear stochastic models," Journal of Economic Theory, Elsevier, vol. 48(2), pages 337-368, August.
    9. Beck, Gunter W. & Wieland, Volker, 2002. "Learning and control in a changing economic environment," Journal of Economic Dynamics and Control, Elsevier, vol. 26(9-10), pages 1359-1377, August.
    10. Guidolin, Massimo & Timmermann, Allan, 2007. "Properties of equilibrium asset prices under alternative learning schemes," Journal of Economic Dynamics and Control, Elsevier, vol. 31(1), pages 161-217, January.
    11. Volker Wieland, "undated". "Monetary Policy and Uncertainty about the Natural Unemployment Rate," Computing in Economics and Finance 1997 11, Society for Computational Economics.
    12. Timothy Cogley & Thomas J. Sargent, 2008. "Anticipated Utility And Rational Expectations As Approximations Of Bayesian Decision Making," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 49(1), pages 185-221, February.
    13. McGough, Bruce, 2003. "Statistical Learning With Time-Varying Parameters," Macroeconomic Dynamics, Cambridge University Press, vol. 7(1), pages 119-139, February.
    14. Sack, Brian & Wieland, Volker, 2000. "Interest-rate smoothing and optimal monetary policy: a review of recent empirical evidence," Journal of Economics and Business, Elsevier, vol. 52(1-2), pages 205-228.
    15. Julio J. Rotemberg & Michael Woodford, 1997. "An Optimization-Based Econometric Framework for the Evaluation of Monetary Policy," NBER Chapters, in: NBER Macroeconomics Annual 1997, Volume 12, pages 297-361, National Bureau of Economic Research, Inc.
    16. Ben S. Bernanke & Julio J. Rotemberg (ed.), 1997. "NBER Macroeconomics Annual 1997," MIT Press Books, The MIT Press, edition 1, volume 1, number 026252242x, April.
    17. Jacobs,Donald P. & Kalai,Ehud & Kamien,Morton I. & Schwartz,Nancy L. (ed.), 1998. "Frontiers of Research in Economic Theory," Cambridge Books, Cambridge University Press, number 9780521635387, September.
    18. Bullard, James, 1992. "Time-varying parameters and nonconvergence to rational expectations under least squares learning," Economics Letters, Elsevier, vol. 40(2), pages 159-166, October.
    19. Bray, Margaret M & Savin, Nathan E, 1986. "Rational Expectations Equilibria, Learning, and Model Specification," Econometrica, Econometric Society, vol. 54(5), pages 1129-1160, September.
    20. Kiefer, Nicholas M & Nyarko, Yaw, 1989. "Optimal Control of an Unknown Linear Process with Learning," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(3), pages 571-586, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elliot Aurissergues, 2017. "Are consistent expectations better than rational expectations ?," Working Papers hal-01558223, HAL.
    2. Emanuele Brancati & Marco Macchiavelli, 2020. "Endogenous debt maturity and rollover risk," Financial Management, Financial Management Association International, vol. 49(1), pages 69-90, March.
    3. Carravetta, Francesco & Sorge, Marco M., 2011. "On the Solution of Markov-switching Rational Expectations Models," Bonn Econ Discussion Papers 05/2011, University of Bonn, Bonn Graduate School of Economics (BGSE).
    4. Carravetta, Francesco & Sorge, Marco M., 2013. "Model reference adaptive expectations in Markov-switching economies," Economic Modelling, Elsevier, vol. 32(C), pages 551-559.
    5. Milani, Fabio, 2014. "Learning and time-varying macroeconomic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 47(C), pages 94-114.
    6. Alistair Macaulay, 2022. "Heterogeneous Information, Subjective Model Beliefs, and the Time-Varying Transmission of Shocks," CESifo Working Paper Series 9733, CESifo.
    7. Frank Hespeler & Marco M. Sorge, 2018. "Does Near†Rationality Matter In First†Order Approximate Solutions? A Perturbation Approach," Bulletin of Economic Research, Wiley Blackwell, vol. 70(1), pages 97-113, January.
    8. Emanuele Brancati & Marco Macchiavelli, 2015. "The Role of Dispersed Information in Pricing Default: Evidence from the Great Recession," Finance and Economics Discussion Series 2015-79, Board of Governors of the Federal Reserve System (U.S.).
    9. Gerba, Eddie & Żochowski, Dawid, 2017. "Knightian uncertainty and credit cycles," Working Paper Series 2068, European Central Bank.
    10. Evans, David & Evans, George W. & McGough, Bruce, 2022. "The RPEs of RBCs and other DSGEs," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guidolin, Massimo & Timmermann, Allan, 2007. "Properties of equilibrium asset prices under alternative learning schemes," Journal of Economic Dynamics and Control, Elsevier, vol. 31(1), pages 161-217, January.
    2. Coenen Günter & Orphanides Athanasios & Wieland Volker, 2004. "Price Stability and Monetary Policy Effectiveness when Nominal Interest Rates are Bounded at Zero," The B.E. Journal of Macroeconomics, De Gruyter, vol. 4(1), pages 1-25, February.
    3. Volker Wieland, "undated". "Monetary Policy and Uncertainty about the Natural Unemployment Rate," Computing in Economics and Finance 1997 11, Society for Computational Economics.
    4. Cosimano, Thomas F., 2008. "Optimal experimentation and the perturbation method in the neighborhood of the augmented linear regulator problem," Journal of Economic Dynamics and Control, Elsevier, vol. 32(6), pages 1857-1894, June.
    5. Tetlow, Robert J. & von zur Muehlen, Peter, 2009. "Robustifying learnability," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 296-316, February.
    6. Berardi, Michele & Galimberti, Jaqueson K., 2013. "A note on exact correspondences between adaptive learning algorithms and the Kalman filter," Economics Letters, Elsevier, vol. 118(1), pages 139-142.
    7. Evans, David & Evans, George W. & McGough, Bruce, 2022. "The RPEs of RBCs and other DSGEs," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    8. Kimura, Takeshi & Kurozumi, Takushi, 2007. "Optimal monetary policy in a micro-founded model with parameter uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 399-431, February.
    9. Coenen, Gunter & Wieland, Volker, 2005. "A small estimated euro area model with rational expectations and nominal rigidities," European Economic Review, Elsevier, vol. 49(5), pages 1081-1104, July.
    10. David Kendrick & Hans Amman, 2006. "A Classification System for Economic Stochastic Control Models," Computational Economics, Springer;Society for Computational Economics, vol. 27(4), pages 453-481, June.
    11. In-Koo Cho & Kenneth Kasa, 2015. "Learning and Model Validation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(1), pages 45-82.
    12. Volker Wieland, 2009. "Learning, Endogenous Indexation, and Disinflation in the New-Keynesian Model," Central Banking, Analysis, and Economic Policies Book Series, in: Klaus Schmidt-Hebbel & Carl E. Walsh & Norman Loayza (Series Editor) & Klaus Schmidt-Hebbel (Series (ed.),Monetary Policy under Uncertainty and Learning, edition 1, volume 13, chapter 11, pages 413-450, Central Bank of Chile.
    13. Beck, Guenter W. & Wieland, Volker, 2008. "Central bank misperceptions and the role of money in interest-rate rules," Journal of Monetary Economics, Elsevier, vol. 55(Supplemen), pages 1-17, October.
    14. Cunha-e-Sa, Maria A. & Santos, Vasco, 2008. "Experimentation with accumulation," Journal of Economic Dynamics and Control, Elsevier, vol. 32(2), pages 470-496, February.
    15. Hans M. Amman & Marco Paolo Tucci, 2018. "How active is active learning: value function method vs an approximation method," Department of Economics University of Siena 788, Department of Economics, University of Siena.
    16. Wieland, Volker & Wolters, Maik, 2013. "Forecasting and Policy Making," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 239-325, Elsevier.
    17. Tim Willems, 2017. "Actively Learning by Pricing: A Model of an Experimenting Seller," Economic Journal, Royal Economic Society, vol. 127(604), pages 2216-2239, September.
    18. Beck, Guenter W. & Wieland, Volker, 2009. "Money in monetary policy design: Monetary cross-checking in the New-Keynesian Model," CFS Working Paper Series 2009/19, Center for Financial Studies (CFS).
    19. Andrew T. Levin & Alexei Onatski & John Williams & Noah M. Williams, 2006. "Monetary Policy under Uncertainty in Micro-Founded Macroeconometric Models," NBER Chapters, in: NBER Macroeconomics Annual 2005, Volume 20, pages 229-312, National Bureau of Economic Research, Inc.
    20. Berardi, Michele & Galimberti, Jaqueson K., 2017. "Empirical calibration of adaptive learning," Journal of Economic Behavior & Organization, Elsevier, vol. 144(C), pages 219-237.

    More about this item

    Keywords

    Expectational stability; recursive learning; learnability of rational expectations equilibrium.;
    All these keywords.

    JEL classification:

    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations
    • E00 - Macroeconomics and Monetary Economics - - General - - - General
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bfr:banfra:332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael brassart (email available below). General contact details of provider: https://edirc.repec.org/data/bdfgvfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.