[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2205.04637.html
   My bibliography  Save this paper

Distributionally Robust Policy Learning with Wasserstein Distance

Author

Listed:
  • Daido Kido
Abstract
The effects of treatments are often heterogeneous, depending on the observable characteristics, and it is necessary to exploit such heterogeneity to devise individualized treatment rules (ITRs). Existing estimation methods of such ITRs assume that the available experimental or observational data are derived from the target population in which the estimated policy is implemented. However, this assumption often fails in practice because of limited useful data. In this case, policymakers must rely on the data generated in the source population, which differs from the target population. Unfortunately, existing estimation methods do not necessarily work as expected in the new setting, and strategies that can achieve a reasonable goal in such a situation are required. This study examines the application of distributionally robust optimization (DRO), which formalizes an ambiguity about the target population and adapts to the worst-case scenario in the set. It is shown that DRO with Wasserstein distance-based characterization of ambiguity provides simple intuitions and a simple estimation method. I then develop an estimator for the distributionally robust ITR and evaluate its theoretical performance. An empirical application shows that the proposed approach outperforms the naive approach in the target population.

Suggested Citation

  • Daido Kido, 2022. "Distributionally Robust Policy Learning with Wasserstein Distance," Papers 2205.04637, arXiv.org, revised Aug 2022.
  • Handle: RePEc:arx:papers:2205.04637
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2205.04637
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yingqi Zhao & Donglin Zeng & A. John Rush & Michael R. Kosorok, 2012. "Estimating Individualized Treatment Rules Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1106-1118, September.
    2. Rajeev Dehejia & Cristian Pop-Eleches & Cyrus Samii, 2021. "From Local to Global: External Validity in a Fertility Natural Experiment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 217-243, January.
    3. Nathan Kallus, 2021. "More Efficient Policy Learning via Optimal Retargeting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 646-658, April.
    4. Stoye, Jörg, 2009. "Minimax regret treatment choice with finite samples," Journal of Econometrics, Elsevier, vol. 151(1), pages 70-81, July.
    5. Toru Kitagawa & Aleksey Tetenov, 2021. "Equality-Minded Treatment Choice," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 561-574, March.
    6. Keisuke Hirano & Jack R. Porter, 2009. "Asymptotics for Statistical Treatment Rules," Econometrica, Econometric Society, vol. 77(5), pages 1683-1701, September.
    7. Eva Vivalt, 2020. "How Much Can We Generalize From Impact Evaluations?," Journal of the European Economic Association, European Economic Association, vol. 18(6), pages 3045-3089.
    8. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    9. Toru Kitagawa & Aleksey Tetenov, 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
    10. Weibin Mo & Zhengling Qi & Yufeng Liu, 2021. "Learning Optimal Distributionally Robust Individualized Treatment Rules," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 659-674, April.
    11. Friedlander, Daniel & Robins, Philip K, 1995. "Evaluating Program Evaluations: New Evidence on Commonly Used Nonexperimental Methods," American Economic Review, American Economic Association, vol. 85(4), pages 923-937, September.
    12. Hunt Allcott, 2015. "Site Selection Bias in Program Evaluation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(3), pages 1117-1165.
    13. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    14. Shapiro, Alexander, 2021. "Tutorial on risk neutral, distributionally robust and risk averse multistage stochastic programming," European Journal of Operational Research, Elsevier, vol. 288(1), pages 1-13.
    15. Lant Pritchett, Justin Sandefur, 2013. "Context Matters for Size: Why External Validity Claims and Development Practice Don't Mix-Working Paper 336," Working Papers 336, Center for Global Development.
    16. Keisuke Hirano & Jack R. Porter, 2012. "Impossibility Results for Nondifferentiable Functionals," Econometrica, Econometric Society, vol. 80(4), pages 1769-1790, July.
    17. Andrews, Isaiah & Oster, Emily, 2019. "A simple approximation for evaluating external validity bias," Economics Letters, Elsevier, vol. 178(C), pages 58-62.
    18. Weibin Mo & Zhengling Qi & Yufeng Liu, 2021. "Rejoinder: Learning Optimal Distributionally Robust Individualized Treatment Rules," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 699-707, April.
    19. Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
    20. Elizabeth A. Stuart & Stephen R. Cole & Catherine P. Bradshaw & Philip J. Leaf, 2011. "The use of propensity scores to assess the generalizability of results from randomized trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(2), pages 369-386, April.
    21. Erin Hartman & Richard Grieve & Roland Ramsahai & Jasjeet S. Sekhon, 2015. "From sample average treatment effect to population average treatment effect on the treated: combining experimental with observational studies to estimate population treatment effects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(3), pages 757-778, June.
    22. Joseph Hotz, V. & Imbens, Guido W. & Mortimer, Julie H., 2005. "Predicting the efficacy of future training programs using past experiences at other locations," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 241-270.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toru Kitagawa & Hugo Lopez & Jeff Rowley, 2022. "Stochastic Treatment Choice with Empirical Welfare Updating," Papers 2211.01537, arXiv.org, revised Feb 2023.
    2. Yanqin Fan & Hyeonseok Park & Gaoqian Xu, 2023. "Quantifying Distributional Model Risk in Marginal Problems via Optimal Transport," Papers 2307.00779, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daido Kido, 2023. "Locally Asymptotically Minimax Statistical Treatment Rules Under Partial Identification," Papers 2311.08958, arXiv.org.
    2. Takuya Ishihara & Toru Kitagawa, 2021. "Evidence Aggregation for Treatment Choice," Papers 2108.06473, arXiv.org, revised Jul 2024.
    3. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    4. Toru Kitagawa & Weining Wang & Mengshan Xu, 2022. "Policy Choice in Time Series by Empirical Welfare Maximization," Papers 2205.03970, arXiv.org, revised Dec 2024.
    5. Kohei Yata, 2021. "Optimal Decision Rules Under Partial Identification," Papers 2111.04926, arXiv.org, revised Aug 2023.
    6. Christopher Adjaho & Timothy Christensen, 2022. "Externally Valid Policy Choice," Papers 2205.05561, arXiv.org, revised Jul 2023.
    7. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    8. Anders Bredahl Kock & David Preinerstorfer, 2024. "Regularizing Discrimination in Optimal Policy Learning with Distributional Targets," Papers 2401.17909, arXiv.org.
    9. Toru Kitagawa & Guanyi Wang, 2021. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP28/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Toru Kitagawa & Shosei Sakaguchi & Aleksey Tetenov, 2021. "Constrained Classification and Policy Learning," Papers 2106.12886, arXiv.org, revised Jul 2023.
    11. Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
    12. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    13. Toru Kitagawa & Guanyi Wang, 2020. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP59/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Chunrong Ai & Yue Fang & Haitian Xie, 2024. "Data-driven Policy Learning for Continuous Treatments," Papers 2402.02535, arXiv.org, revised Nov 2024.
    15. Toru Kitagawa & Guanyi Wang, 2020. "Who Should Get Vaccinated? Individualized Allocation of Vaccines Over SIR Network," Papers 2012.04055, arXiv.org, revised Jul 2021.
    16. Toru Kitagawa & Sokbae Lee & Chen Qiu, 2022. "Treatment Choice with Nonlinear Regret," Papers 2205.08586, arXiv.org, revised Oct 2024.
    17. Manski, Charles F., 2023. "Probabilistic prediction for binary treatment choice: With focus on personalized medicine," Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
    18. Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
    19. Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Aug 2024.
    20. Charles F. Manski, 2021. "Econometrics for Decision Making: Building Foundations Sketched by Haavelmo and Wald," Econometrica, Econometric Society, vol. 89(6), pages 2827-2853, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2205.04637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.