[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1509.02179.html
   My bibliography  Save this paper

Kriging Metamodels and Experimental Design for Bermudan Option Pricing

Author

Listed:
  • Michael Ludkovski
Abstract
We investigate two new strategies for the numerical solution of optimal stopping problems within the Regression Monte Carlo (RMC) framework of Longstaff and Schwartz. First, we propose the use of stochastic kriging (Gaussian process) meta-models for fitting the continuation value. Kriging offers a flexible, nonparametric regression approach that quantifies approximation quality. Second, we connect the choice of stochastic grids used in RMC to the Design of Experiments paradigm. We examine space-filling and adaptive experimental designs; we also investigate the use of batching with replicated simulations at design sites to improve the signal-to-noise ratio. Numerical case studies for valuing Bermudan Puts and Max-Calls under a variety of asset dynamics illustrate that our methods offer significant reduction in simulation budgets over existing approaches.

Suggested Citation

  • Michael Ludkovski, 2015. "Kriging Metamodels and Experimental Design for Bermudan Option Pricing," Papers 1509.02179, arXiv.org, revised Oct 2016.
  • Handle: RePEc:arx:papers:1509.02179
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1509.02179
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fouque,Jean-Pierre & Papanicolaou,George & Sircar,Ronnie & Sølna,Knut, 2011. "Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives," Cambridge Books, Cambridge University Press, number 9780521843584.
    2. Denis Belomestny & Fabian Dickmann & Tigran Nagapetyan, 2013. "Pricing American options via multi-level approximation methods," Papers 1303.1334, arXiv.org, revised Dec 2013.
    3. Michael Kohler, 2008. "A regression-based smoothing spline Monte Carlo algorithm for pricing American options in discrete time," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(2), pages 153-178, May.
    4. W C M van Beers & J P C Kleijnen, 2003. "Kriging for interpolation in random simulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(3), pages 255-262, March.
    5. repec:dau:papers:123456789/11523 is not listed on IDEAS
    6. Bruce Ankenman & Barry L. Nelson & Jeremy Staum, 2010. "Stochastic Kriging for Simulation Metamodeling," Operations Research, INFORMS, vol. 58(2), pages 371-382, April.
    7. Jack P.C. Kleijnen, 2015. "Design and Analysis of Simulation Experiments," International Series in Operations Research and Management Science, Springer, edition 2, number 978-3-319-18087-8, March.
    8. Pascal L�tourneau & Lars Stentoft, 2014. "Refining the least squares Monte Carlo method by imposing structure," Quantitative Finance, Taylor & Francis Journals, vol. 14(3), pages 495-507, March.
    9. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    10. Phelim P. Boyle & Adam W. Kolkiewicz & Ken Seng Tan, 2013. "Pricing Bermudan options using low-discrepancy mesh methods," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 841-860, May.
    11. Lars Stentoft, 2004. "Assessing the Least Squares Monte-Carlo Approach to American Option Valuation," Review of Derivatives Research, Springer, vol. 7(2), pages 129-168, August.
    12. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    13. Christian Bender & Anastasia Kolodko & John Schoenmakers, 2008. "Enhanced policy iteration for American options via scenario selection," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 135-146.
    14. Roustant, Olivier & Ginsbourger, David & Deville, Yves, 2012. "DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i01).
    15. Kin Hung (Felix) Kan & R. Mark Reesor, 2012. "Bias Reduction for Pricing American Options by Least-Squares Monte Carlo," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(3), pages 195-217, July.
    16. Lars Stentoft, 2004. "Convergence of the Least Squares Monte Carlo Approach to American Option Valuation," Management Science, INFORMS, vol. 50(9), pages 1193-1203, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kentaro Hoshisashi & Yuji Yamada, 2023. "Pricing Multi-Asset Bermudan Commodity Options with Stochastic Volatility Using Neural Networks," JRFM, MDPI, vol. 16(3), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabozzi, Frank J. & Paletta, Tommaso & Tunaru, Radu, 2017. "An improved least squares Monte Carlo valuation method based on heteroscedasticity," European Journal of Operational Research, Elsevier, vol. 263(2), pages 698-706.
    2. Gabriel J Power & Charli D. Tandja M. & Josée Bastien & Philippe Grégoire, 2015. "Measuring infrastructure investment option value," Journal of Risk Finance, Emerald Group Publishing, vol. 16(1), pages 49-72, January.
    3. Reesor, R. Mark & Stentoft, Lars & Zhu, Xiaotian, 2024. "A critical analysis of the Weighted Least Squares Monte Carlo method for pricing American options," Finance Research Letters, Elsevier, vol. 64(C).
    4. Mike Ludkovski, 2020. "mlOSP: Towards a Unified Implementation of Regression Monte Carlo Algorithms," Papers 2012.00729, arXiv.org, revised Oct 2022.
    5. Jeechul Woo & Chenru Liu & Jaehyuk Choi, 2024. "Leave‐one‐out least squares Monte Carlo algorithm for pricing Bermudan options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1404-1428, August.
    6. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    7. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    8. Andrea Gamba & Nicola Fusari, 2009. "Valuing Modularity as a Real Option," Management Science, INFORMS, vol. 55(11), pages 1877-1896, November.
    9. Carmen Schiel & Simon Glöser-Chahoud & Frank Schultmann, 2019. "A real option application for emission control measures," Journal of Business Economics, Springer, vol. 89(3), pages 291-325, April.
    10. Yi Yang & Jianan Wang & Youhua Chen & Zhiyuan Chen & Yanchu Liu, 2020. "Optimal procurement strategies for contractual assembly systems with fluctuating procurement price," Annals of Operations Research, Springer, vol. 291(1), pages 1027-1059, August.
    11. Carmona, Julio & León, Angel & Vaello-Sebastià, Antoni, 2011. "Pricing executive stock options under employment shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 35(1), pages 97-114, January.
    12. Locatelli, Giorgio & Mancini, Mauro & Lotti, Giovanni, 2020. "A simple-to-implement real options method for the energy sector," Energy, Elsevier, vol. 197(C).
    13. Nelson Areal & Artur Rodrigues & Manuel Armada, 2008. "On improving the least squares Monte Carlo option valuation method," Review of Derivatives Research, Springer, vol. 11(1), pages 119-151, March.
    14. Mario Cerrato & Kan Kwok Cheung, 2007. "Valuing American Style Options by Least Squares Methods," Money Macro and Finance (MMF) Research Group Conference 2006 49, Money Macro and Finance Research Group.
    15. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    16. Calypso Herrera & Louis Paulot, 2014. "Parallel American Monte Carlo," Papers 1404.1180, arXiv.org.
    17. Rombouts, Jeroen V.K. & Stentoft, Lars, 2011. "Multivariate option pricing with time varying volatility and correlations," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2267-2281, September.
    18. Berridge, S.J. & Schumacher, J.M., 2002. "An Irregular Grid Approach for Pricing High Dimensional American Options," Discussion Paper 2002-99, Tilburg University, Center for Economic Research.
    19. Katarzyna Toporek, 2012. "Simple is better. Empirical comparison of American option valuation methods," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 29.
    20. Rombouts, Jeroen & Stentoft, Lars & Violante, Franceso, 2014. "The value of multivariate model sophistication: An application to pricing Dow Jones Industrial Average options," International Journal of Forecasting, Elsevier, vol. 30(1), pages 78-98.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1509.02179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.