[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1507.00250.html
   My bibliography  Save this paper

Asset Allocation Strategies Based on Penalized Quantile Regression

Author

Listed:
  • Giovanni Bonaccolto
  • Massimiliano Caporin
  • Sandra Paterlini
Abstract
It is well known that quantile regression model minimizes the portfolio extreme risk, whenever the attention is placed on the estimation of the response variable left quantiles. We show that, by considering the entire conditional distribution of the dependent variable, it is possible to optimize different risk and performance indicators. In particular, we introduce a risk-adjusted profitability measure, useful in evaluating financial portfolios under a pessimistic perspective, since the reward contribution is net of the most favorable outcomes. Moreover, as we consider large portfolios, we also cope with the dimensionality issue by introducing an l1-norm penalty on the assets weights.

Suggested Citation

  • Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2015. "Asset Allocation Strategies Based on Penalized Quantile Regression," Papers 1507.00250, arXiv.org.
  • Handle: RePEc:arx:papers:1507.00250
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1507.00250
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gilbert W. Bassett, 2004. "Pessimistic Portfolio Allocation and Choquet Expected Utility," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 477-492.
    2. Giannone, Domenico & De Mol, Christine & Daubechies, Ingrid & Brodie, Joshua, 2007. "Sparse and Stable Markowitz Portfolios," CEPR Discussion Papers 6474, C.E.P.R. Discussion Papers.
    3. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    4. Alexander, Gordon J. & Baptista, Alexandre M., 2002. "Economic implications of using a mean-VaR model for portfolio selection: A comparison with mean-variance analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 26(7-8), pages 1159-1193, July.
    5. Tomohiro Ando & Jushan Bai, 2015. "Asset Pricing with a General Multifactor Structure," Journal of Financial Econometrics, Oxford University Press, vol. 13(3), pages 556-604.
    6. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    7. Stefano Ciliberti & Imre Kondor & Marc Mezard, 2007. "On the feasibility of portfolio optimization under expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 389-396.
    8. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    9. B. Fastrich & S. Paterlini & P. Winker, 2015. "Constructing optimal sparse portfolios using regularization methods," Computational Management Science, Springer, vol. 12(3), pages 417-434, July.
    10. Jianqing Fan & Jingjin Zhang & Ke Yu, 2012. "Vast Portfolio Selection With Gross-Exposure Constraints," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 592-606, June.
    11. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    12. Farinelli, Simone & Ferreira, Manuel & Rossello, Damiano & Thoeny, Markus & Tibiletti, Luisa, 2008. "Beyond Sharpe ratio: Optimal asset allocation using different performance ratios," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2057-2063, October.
    13. John Lintner, 1965. "Security Prices, Risk, And Maximal Gains From Diversification," Journal of Finance, American Finance Association, vol. 20(4), pages 587-615, December.
    14. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    15. Massimiliano Caporin & Grégory M. Jannin & Francesco Lisi & Bertrand B. Maillet, 2014. "A Survey On The Four Families Of Performance Measures," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 917-942, December.
    16. Song Xi Chen, 2008. "Nonparametric Estimation of Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 6(1), pages 87-107, Winter.
    17. Jun-ya Gotoh & Akiko Takeda, 2011. "On the role of norm constraints in portfolio selection," Computational Management Science, Springer, vol. 8(4), pages 323-353, November.
    18. Ledoit, Oliver & Wolf, Michael, 2008. "Robust performance hypothesis testing with the Sharpe ratio," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 850-859, December.
    19. Jianqing Fan & Alex Furger & Dacheng Xiu, 2016. "Incorporating Global Industrial Classification Standard Into Portfolio Allocation: A Simple Factor-Based Large Covariance Matrix Estimator With High-Frequency Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 489-503, October.
    20. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    21. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    22. Mark Britten‐Jones, 1999. "The Sampling Error in Estimates of Mean‐Variance Efficient Portfolio Weights," Journal of Finance, American Finance Association, vol. 54(2), pages 655-671, April.
    23. Härdle, Wolfgang Karl & Nasekin, Sergey & Lee, David Kuo Chuen & Fai, Phoon Kok, 2014. "TEDAS - Tail Event Driven ASset Allocation," SFB 649 Discussion Papers 2014-032, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    24. repec:bla:jfinan:v:58:y:2003:i:4:p:1651-1684 is not listed on IDEAS
    25. Fitzenberger, Bernd & Winker, Peter, 2007. "Improving the computation of censored quantile regressions," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 88-108, September.
    26. Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.
    27. Sergio Ortobelli & Svetlozar T. Rachev & Stoyan Stoyanov & Frank J. Fabozzi & Almira Biglova, 2005. "The Proper Use Of Risk Measures In Portfolio Theory," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(08), pages 1107-1133.
    28. Alexandre Belloni & Victor Chernozhukov, 2009. "L1-Penalized Quantile Regression in High-Dimensional Sparse Models," Papers 0904.2931, arXiv.org, revised Sep 2019.
    29. Xing, Xin & Hu, Jinjin & Yang, Yaning, 2014. "Robust minimum variance portfolio with L-infinity constraints," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 107-117.
    30. Yen, Yu-Min & Yen, Tso-Jung, 2014. "Solving norm constrained portfolio optimization via coordinate-wise descent algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 737-759.
    31. Statman, Meir, 1987. "How Many Stocks Make a Diversified Portfolio?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(3), pages 353-363, September.
    32. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    33. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    34. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    35. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    36. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    37. Renata Mansini & Włodzimierz Ogryczak & M. Speranza, 2007. "Conditional value at risk and related linear programming models for portfolio optimization," Annals of Operations Research, Springer, vol. 152(1), pages 227-256, July.
    38. Tian, Shaonan & Yu, Yan & Guo, Hui, 2015. "Variable selection and corporate bankruptcy forecasts," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 89-100.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taras Bodnar & Mathias Lindholm & Erik Thorsén & Joanna Tyrcha, 2021. "Quantile-based optimal portfolio selection," Computational Management Science, Springer, vol. 18(3), pages 299-324, July.
    2. Michele Costola & Bertrand Maillet & Zhining Yuan & Xiang Zhang, 2024. "Mean–variance efficient large portfolios: a simple machine learning heuristic technique based on the two-fund separation theorem," Annals of Operations Research, Springer, vol. 334(1), pages 133-155, March.
    3. Sungchul Hong & Jong-June Jeon, 2023. "Uniform Pessimistic Risk and its Optimal Portfolio," Papers 2303.07158, arXiv.org, revised May 2024.
    4. Taras Bodnar & Dmytro Ivasiuk & Nestor Parolya & Wolfgang Schmid, 2023. "Multi-period power utility optimization under stock return predictability," Computational Management Science, Springer, vol. 20(1), pages 1-27, December.
    5. Giovanni Bonaccolto, 2019. "Critical Decisions for Asset Allocation via Penalized Quantile Regression," Papers 1908.04697, arXiv.org.
    6. Giovanni Bonaccolto, 2021. "Quantile– based portfolios: post– model– selection estimation with alternative specifications," Computational Management Science, Springer, vol. 18(3), pages 355-383, July.
    7. De Gooijer Jan G. & Zerom Dawit, 2020. "Penalized Averaging of Parametric and Non-Parametric Quantile Forecasts," Journal of Time Series Econometrics, De Gruyter, vol. 12(1), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Bonaccolto, 2019. "Critical Decisions for Asset Allocation via Penalized Quantile Regression," Papers 1908.04697, arXiv.org.
    2. Giovanni Bonaccolto, 2021. "Quantile– based portfolios: post– model– selection estimation with alternative specifications," Computational Management Science, Springer, vol. 18(3), pages 355-383, July.
    3. Michele Costola & Bertrand Maillet & Zhining Yuan & Xiang Zhang, 2024. "Mean–variance efficient large portfolios: a simple machine learning heuristic technique based on the two-fund separation theorem," Annals of Operations Research, Springer, vol. 334(1), pages 133-155, March.
    4. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    5. Wolfgang Karl Härdle & David Kuo Chuen Lee & Sergey Nasekin & Alla Petukhina, 2018. "Tail Event Driven ASset allocation: evidence from equity and mutual funds’ markets," Journal of Asset Management, Palgrave Macmillan, vol. 19(1), pages 49-63, January.
    6. Kremer, Philipp J. & Lee, Sangkyun & Bogdan, Małgorzata & Paterlini, Sandra, 2020. "Sparse portfolio selection via the sorted ℓ1-Norm," Journal of Banking & Finance, Elsevier, vol. 110(C).
    7. Philipp J. Kremer & Andreea Talmaciu & Sandra Paterlini, 2018. "Risk minimization in multi-factor portfolios: What is the best strategy?," Annals of Operations Research, Springer, vol. 266(1), pages 255-291, July.
    8. Yen, Yu-Min & Yen, Tso-Jung, 2014. "Solving norm constrained portfolio optimization via coordinate-wise descent algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 737-759.
    9. Varga-Haszonits, Istvan & Caccioli, Fabio & Kondor, Imre, 2016. "Replica approach to mean-variance portfolio optimization," LSE Research Online Documents on Economics 68955, London School of Economics and Political Science, LSE Library.
    10. Oikonomou, Ioannis & Platanakis, Emmanouil & Sutcliffe, Charles, 2018. "Socially responsible investment portfolios: Does the optimization process matter?," The British Accounting Review, Elsevier, vol. 50(4), pages 379-401.
    11. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    12. Massimiliano Caporin & Grégory M. Jannin & Francesco Lisi & Bertrand B. Maillet, 2014. "A Survey On The Four Families Of Performance Measures," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 917-942, December.
    13. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    14. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    15. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
    16. Weidong Lin & Jose Olmo & Abderrahim Taamouti, 2022. "Portfolio Selection Under Systemic Risk," Working Papers 202208, University of Liverpool, Department of Economics.
    17. Schuhmacher, Frank & Auer, Benjamin R., 2014. "Sufficient conditions under which SSD- and MR-efficient sets are identical," European Journal of Operational Research, Elsevier, vol. 239(3), pages 756-763.
    18. Qifa Xu & Junqing Zuo & Cuixia Jiang & Yaoyao He, 2021. "A large constrained time‐varying portfolio selection model with DCC‐MIDAS: Evidence from Chinese stock market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3417-3435, July.
    19. P. Kumar & Jyotirmayee Behera & A. K. Bhurjee, 2022. "Solving mean-VaR portfolio selection model with interval-typed random parameter using interval analysis," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 41-77, March.
    20. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.

    More about this item

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1507.00250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.