[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v107y2012i498p592-606.html
   My bibliography  Save this article

Vast Portfolio Selection With Gross-Exposure Constraints

Author

Listed:
  • Jianqing Fan
  • Jingjin Zhang
  • Ke Yu
Abstract
This article introduces the large portfolio selection using gross-exposure constraints. It shows that with gross-exposure constraints, the empirically selected optimal portfolios based on estimated covariance matrices have similar performance to the theoretical optimal ones and there is no error accumulation effect from estimation of vast covariance matrices. This gives theoretical justification to the empirical results by Jagannathan and Ma. It also shows that the no-short-sale portfolio can be improved by allowing some short positions. The applications to portfolio selection, tracking, and improvements are also addressed. The utility of our new approach is illustrated by simulation and empirical studies on the 100 Fama--French industrial portfolios and the 600 stocks randomly selected from Russell 3000.

Suggested Citation

  • Jianqing Fan & Jingjin Zhang & Ke Yu, 2012. "Vast Portfolio Selection With Gross-Exposure Constraints," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 592-606, June.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:498:p:592-606
    DOI: 10.1080/01621459.2012.682825
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2012.682825
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2012.682825?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:498:p:592-606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.