[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1502.03978.html
   My bibliography  Save this paper

Non Parametric Estimates of Option Prices Using Superhedging

Author

Listed:
  • Gianluca Cassese
Abstract
We propose a new non parametric technique to estimate the CALL function based on the superhedging principle. Our approach does not require absence of arbitrage and easily accommodates bid/ask spreads and other market imperfections. We prove some optimal statistical properties of our estimates. As an application we first test the methodology on a simulated sample of option prices and then on the S\&P 500 index options.

Suggested Citation

  • Gianluca Cassese, 2015. "Non Parametric Estimates of Option Prices Using Superhedging," Papers 1502.03978, arXiv.org.
  • Handle: RePEc:arx:papers:1502.03978
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1502.03978
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. P. Gagliardini & C. Gourieroux & E. Renault, 2011. "Efficient Derivative Pricing by the Extended Method of Moments," Econometrica, Econometric Society, vol. 79(4), pages 1181-1232, July.
    2. Gianluca Cassese, 2017. "Asset pricing in an imperfect world," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 64(3), pages 539-570, October.
    3. Ait-Sahalia, Yacine & Duarte, Jefferson, 2003. "Nonparametric option pricing under shape restrictions," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
    4. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. "Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    5. Huang, Roger D & Stoll, Hans R, 1997. "The Components of the Bid-Ask Spread: A General Approach," The Review of Financial Studies, Society for Financial Studies, vol. 10(4), pages 995-1034.
    6. Soderlind, Paul & Svensson, Lars, 1997. "New techniques to extract market expectations from financial instruments," Journal of Monetary Economics, Elsevier, vol. 40(2), pages 383-429, October.
    7. E. Mammen & C. Thomas‐Agnan, 1999. "Smoothing Splines and Shape Restrictions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(2), pages 239-252, June.
    8. Rompolis, Leonidas S. & Tzavalis, Elias, 2008. "Recovering Risk Neutral Densities from Option Prices: A New Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 43(4), pages 1037-1053, December.
    9. Melick, William R. & Thomas, Charles P., 1997. "Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(1), pages 91-115, March.
    10. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    11. Fengler, Matthias R. & Hin, Lin-Yee, 2015. "Semi-nonparametric estimation of the call-option price surface under strike and time-to-expiry no-arbitrage constraints," Journal of Econometrics, Elsevier, vol. 184(2), pages 242-261.
    12. Robert J. Ritchey, 1990. "Call Option Valuation For Discrete Normal Mixtures," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 13(4), pages 285-296, December.
    13. Ritchey, Robert J, 1990. "Call Option Valuation for Discrete Normal Mixtures," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 13(4), pages 285-296, Winter.
    14. H. Yin & Y. Wang & L. Qi, 2009. "Shape-Preserving Interpolation and Smoothing for Options Market Implied Volatility," Journal of Optimization Theory and Applications, Springer, vol. 142(1), pages 243-266, July.
    15. Hasbrouck, Joel, 2002. "Stalking the "efficient price" in market microstructure specifications: an overview," Journal of Financial Markets, Elsevier, vol. 5(3), pages 329-339, July.
    16. Adonis Yatchew, 1998. "Nonparametric Regression Techniques in Economics," Journal of Economic Literature, American Economic Association, vol. 36(2), pages 669-721, June.
    17. repec:bla:jfinan:v:53:y:1998:i:2:p:499-547 is not listed on IDEAS
    18. Banz, Rolf W & Miller, Merton H, 1978. "Prices for State-contingent Claims: Some Estimates and Applications," The Journal of Business, University of Chicago Press, vol. 51(4), pages 653-672, October.
    19. Bollen, Nicolas P. B. & Smith, Tom & Whaley, Robert E., 2004. "Modeling the bid/ask spread: measuring the inventory-holding premium," Journal of Financial Economics, Elsevier, vol. 72(1), pages 97-141, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gianluca Cassese, 2017. "Asset pricing in an imperfect world," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 64(3), pages 539-570, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianluca Cassese, 2014. "Option Pricing in an Imperfect World," Papers 1406.0412, arXiv.org, revised Sep 2016.
    2. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    3. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2019. "Option Implied Risk-Neutral Density Estimation: A Robust and Flexible Method," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 705-728, August.
    4. Li, Yifan & Nolte, Ingmar & Pham, Manh Cuong, 2024. "Parametric risk-neutral density estimation via finite lognormal-Weibull mixtures," Journal of Econometrics, Elsevier, vol. 241(2).
    5. Bondarenko, Oleg, 2003. "Estimation of risk-neutral densities using positive convolution approximation," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 85-112.
    6. Taboga, Marco, 2016. "Option-implied probability distributions: How reliable? How jagged?," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 453-469.
    7. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    8. Vahamaa, Sami, 2005. "Option-implied asymmetries in bond market expectations around monetary policy actions of the ECB," Journal of Economics and Business, Elsevier, vol. 57(1), pages 23-38.
    9. Luiz Vitiello & Ser-Huang Poon, 2014. "Non-monotonic pricing kernel and an extended class of mixture of distributions for option pricing," Review of Derivatives Research, Springer, vol. 17(2), pages 241-259, July.
    10. Vladislav Kargin, 2003. "Consistent Estimation of Pricing Kernels from Noisy Price Data," Papers math/0310223, arXiv.org.
    11. Laurini, Márcio P., 2007. "Imposing No-Arbitrage Conditions In Implied Volatility Surfaces Using Constrained Smoothing Splines," Insper Working Papers wpe_89, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    12. Wilkens, Sascha & Roder, Klaus, 2006. "The informational content of option-implied distributions: Evidence from the Eurex index and interest rate futures options market," Global Finance Journal, Elsevier, vol. 17(1), pages 50-74, September.
    13. Gianluca Cassese, 2019. "Nonparametric Estimates Of Option Prices And Related Quantities," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-29, November.
    14. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    15. Shi-jie Jiang & Mujun Lei & Cheng-Huang Chung, 2018. "An Improvement of Gain-Loss Price Bounds on Options Based on Binomial Tree and Market-Implied Risk-Neutral Distribution," Sustainability, MDPI, vol. 10(6), pages 1-17, June.
    16. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "A data-driven framework for consistent financial valuation and risk measurement," European Journal of Operational Research, Elsevier, vol. 289(1), pages 381-398.
    17. José L. Vilar-Zanón & Olivia Peraita-Ezcurra, 2019. "A linear goal programming method to recover risk neutral probabilities from options prices by maximum entropy," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 259-276, June.
    18. Chung, San-Lin & Wang, Yaw-Huei, 2008. "Bounds and prices of currency cross-rate options," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 631-642, May.
    19. Grith, Maria & Krätschmer, Volker, 2010. "Parametric estimation of risk neutral density functions," SFB 649 Discussion Papers 2010-045, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    20. repec:hum:wpaper:sfb649dp2010-045 is not listed on IDEAS
    21. Maria Kyriacou & Jose Olmo & Marius Strittmatter, 2021. "Optimal portfolio allocation using option‐implied information," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(2), pages 266-285, February.

    More about this item

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1502.03978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.