[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/zbw/i4rdps/70.html
   My bibliography  Save this paper

Large-Scale Education Reform in General Equilibrium: Regression Discontinuity Evidence from India - Comment

Author

Listed:
  • Roodman, David
Abstract
This paper reanalyzes Khanna (2023), which studies labor market effects of schooling in India through regression discontinuity designs. Absent from the data are four dis-tricts close to the discontinuity; restoring them cuts the reduced-form impacts on schooling and log wages by 57% and 63%. Using regression-specific optimal band-widths and a robust variance estimator clustered at the geographic unit of treatment makes impacts statistically indistinguishable from 0. That finding is robust to varying the identifying threshold and the bandwidth. The estimates of general equilibrium effects and elasticities of substitution are not unbiased and have effectively infinite first and second moments.

Suggested Citation

  • Roodman, David, 2023. "Large-Scale Education Reform in General Equilibrium: Regression Discontinuity Evidence from India - Comment," I4R Discussion Paper Series 70, The Institute for Replication (I4R).
  • Handle: RePEc:zbw:i4rdps:70
    Note: This paper received a response: Khanna, Gaurav. 2023. Response to "Comment on Khanna (2023)". I4R Discussion Paper Series No. 71. Institute for Replication. https://hdl.handle.net/10419/276970
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/276969/1/I4R-DP070.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gaurav Khanna, 2023. "Large-Scale Education Reform in General Equilibrium: Regression Discontinuity Evidence from India," Journal of Political Economy, University of Chicago Press, vol. 131(2), pages 549-591.
    2. Esther Duflo, 2001. "Schooling and Labor Market Consequences of School Construction in Indonesia: Evidence from an Unusual Policy Experiment," American Economic Review, American Economic Association, vol. 91(4), pages 795-813, September.
    3. Sebastian Calonico & Matias D. Cattaneo & Rocio Titiunik, 2014. "Robust Nonparametric Confidence Intervals for Regression‐Discontinuity Designs," Econometrica, Econometric Society, vol. 82, pages 2295-2326, November.
    4. Kinal, Terrence W, 1980. "The Existence of Moments of k-Class Estimators," Econometrica, Econometric Society, vol. 48(1), pages 241-249, January.
    5. Douglas Almond & Joseph J. Doyle, 2011. "After Midnight: A Regression Discontinuity Design in Length of Postpartum Hospital Stays," American Economic Journal: Economic Policy, American Economic Association, vol. 3(3), pages 1-34, August.
    6. David Roodman, 2022. "Schooling and Labor Market Consequences of School Construction in Indonesia: Comment," Papers 2207.09036, arXiv.org, revised Mar 2024.
    7. Michal Kolesár & Christoph Rothe, 2018. "Inference in Regression Discontinuity Designs with a Discrete Running Variable," American Economic Review, American Economic Association, vol. 108(8), pages 2277-2304, August.
    8. Guido Imbens & Karthik Kalyanaraman, 2012. "Optimal Bandwidth Choice for the Regression Discontinuity Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 933-959.
    9. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(1), pages 249-275.
    10. C. A. Field & A. H. Welsh, 2007. "Bootstrapping clustered data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 369-390, June.
    11. Sebastian Calonico & Matias D. Cattaneo & Rocío Titiunik, 2015. "Optimal Data-Driven Regression Discontinuity Plots," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1753-1769, December.
    12. Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell & Roc ́ıo Titiunik, 2017. "rdrobust: Software for regression-discontinuity designs," Stata Journal, StataCorp LP, vol. 17(2), pages 372-404, June.
    13. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang He & Otávio Bartalotti, 2020. "Wild bootstrap for fuzzy regression discontinuity designs: obtaining robust bias-corrected confidence intervals," The Econometrics Journal, Royal Economic Society, vol. 23(2), pages 211-231.
    2. Cantoni, Enrico & Gazzè, Ludovica & Schafer, Jerome, 2021. "Turnout in concurrent elections: Evidence from two quasi-experiments in Italy," European Journal of Political Economy, Elsevier, vol. 70(C).
    3. Adam C. Sales & Ben B. Hansen, 2020. "Limitless Regression Discontinuity," Journal of Educational and Behavioral Statistics, , vol. 45(2), pages 143-174, April.
    4. Hansen, Benjamin & Miller, Keaton & Weber, Caroline, 2020. "Federalism, partial prohibition, and cross-border sales: Evidence from recreational marijuana," Journal of Public Economics, Elsevier, vol. 187(C).
    5. Peter Ganong & Simon Jäger, 2018. "A Permutation Test for the Regression Kink Design," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 494-504, April.
    6. Likai Chen & Georg Keilbar & Liangjun Su & Weining Wang, 2023. "Inference on many jumps in nonparametric panel regression models," Papers 2312.01162, arXiv.org, revised Aug 2024.
    7. Yoichi Arai & Taisuke Otsu & Myung Hwan Seo, 2021. "Regression Discontinuity Design with Potentially Many Covariates," Papers 2109.08351, arXiv.org, revised Feb 2024.
    8. Vanessa Cirulli & Giuliano Resce & Marco Ventura, 2024. "Co-payment exemption and healthcare consumption: quasi-experimental evidence from Italy," Empirical Economics, Springer, vol. 67(1), pages 355-380, July.
    9. Christopher Erwin, 2019. "Low-performing student responses to state merit scholarships," Working Papers 2019-02, Auckland University of Technology, Department of Economics.
    10. Burgherr, David, 2022. "Behavioral Responses to a Pension Savings Mandate : Quasi-experimental Evidence from Swiss Tax Data," CAGE Online Working Paper Series 645, Competitive Advantage in the Global Economy (CAGE).
    11. Mellace, Giovanni & Ventura, Marco, 2019. "Intended and unintended effects of public incentives for innovation. Quasi-experimental evidence from Italy," Discussion Papers on Economics 9/2019, University of Southern Denmark, Department of Economics.
    12. Chu, Yu-Wei Luke & Cuffe, Harold E, 2020. "Do Struggling Students Benefit From Continued Student Loan Access? Evidence From University and Beyond," Working Paper Series 21067, Victoria University of Wellington, School of Economics and Finance.
    13. Crespo Cristian, 2020. "Beyond Manipulation: Administrative Sorting in Regression Discontinuity Designs," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 164-181, January.
    14. Li, Yanan & Sunder, Naveen, 2024. "Distributional effects of education on mental health," Labour Economics, Elsevier, vol. 88(C).
    15. Blaise Melly & Rafael Lalive, 2020. "Estimation, Inference, and Interpretation in the Regression Discontinuity Design," Diskussionsschriften dp2016, Universitaet Bern, Departement Volkswirtschaft.
    16. Federico Quaresima & Fabio Fiorillo & Raffaella Santolini, 2018. "Does Political Affiliation Matter On Post-Parliamentary Careers In The Boards Of Public Enterprises?," Working Papers 429, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    17. Mahdi Majbouri, 2019. "The Weight of History: A Natural Experiment in Higher Education," Working Papers 1313, Economic Research Forum, revised 21 Aug 2019.
    18. Fang, Hongsheng & Su, Yunqing & Lu, Weijun, 2022. "Tax incentive and corporate financial performance: Evidence from income tax revenue sharing reform in China," Journal of Asian Economics, Elsevier, vol. 81(C).
    19. Crespo Cristian, 2020. "Beyond Manipulation: Administrative Sorting in Regression Discontinuity Designs," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 164-181, January.
    20. Mellace, Giovanni & Ventura, Marco, 2023. "The short-run effects of public incentives for innovation in Italy," Economic Modelling, Elsevier, vol. 120(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:i4rdps:70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://www.i4replication.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.